CAD/CAM 复合树脂和陶瓷咬合贴面对磨损后牙疲劳和断裂的抵抗力:系统综述。

IF 2.7 Q1 DENTISTRY, ORAL SURGERY & MEDICINE Dental and Medical Problems Pub Date : 2024-05-01 DOI:10.17219/dmp/157347
Karelys Del Cisne Maldonado, Juan Andres Espinoza, Daniela Andrea Astudillo, Bolivar Andres Delgado, Wilson Daniel Bravo
{"title":"CAD/CAM 复合树脂和陶瓷咬合贴面对磨损后牙疲劳和断裂的抵抗力:系统综述。","authors":"Karelys Del Cisne Maldonado, Juan Andres Espinoza, Daniela Andrea Astudillo, Bolivar Andres Delgado, Wilson Daniel Bravo","doi":"10.17219/dmp/157347","DOIUrl":null,"url":null,"abstract":"<p><p>Severe tooth wear is related to substantial loss of tooth structure, with dentin exposure and significant loss (≥1/3) of the clinical crown. The objective of this systematic review was to summarize and analyze the scientific evidence regarding the mechanical performance of computer-aided design/computer-aided manufacturing (CAD/CAM) composite resin and CAD/CAM lithium disilicate ceramic occlusal veneers, in terms of fatigue and fracture resistance, on severely worn posterior teeth. Currently, occlusal veneers are an alternative for treating worn posterior teeth. Although scientific evidence demonstrates the good performance of lithium disilicate occlusal veneers, there are less brittle materials with a modulus of elasticity more similar to dentin than ceramics, such as resin CAD/CAM blocks. Therefore, it is important to identify which type of material is best for restoring teeth with occlusal wear defects and which material can provide better clinical performance. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search of the PubMed, Embase, Web of Science, Scopus, Cochrane, OpenGrey, Redalyc, DSpace, and Grey Literature Report databases was conducted and supplemented by a manual search, with no time or language limitations, until January 2022. We aimed to identify studies evaluating the fatigue and fracture resistance of CAD/CAM composite resin and ceramic occlusal veneers. The quality of the full-text articles was evaluated according to the modified Consolidated Standards of Reporting Trials (CONSORT) criteria for in vitro studies, and 400 articles were initially identified. After removing duplicates and applying the selection criteria, 6 studies were included in the review. The results demonstrated that the mechanical performance of CAD/CAM composite resin occlusal veneers is comparable to that of CAD/CAM lithium disilicate occlusal veneers in terms of fatigue and fracture resistance.</p>","PeriodicalId":11191,"journal":{"name":"Dental and Medical Problems","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistance of CAD/CAM composite resin and ceramic occlusal veneers to fatigue and fracture in worn posterior teeth: A systematic review.\",\"authors\":\"Karelys Del Cisne Maldonado, Juan Andres Espinoza, Daniela Andrea Astudillo, Bolivar Andres Delgado, Wilson Daniel Bravo\",\"doi\":\"10.17219/dmp/157347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Severe tooth wear is related to substantial loss of tooth structure, with dentin exposure and significant loss (≥1/3) of the clinical crown. The objective of this systematic review was to summarize and analyze the scientific evidence regarding the mechanical performance of computer-aided design/computer-aided manufacturing (CAD/CAM) composite resin and CAD/CAM lithium disilicate ceramic occlusal veneers, in terms of fatigue and fracture resistance, on severely worn posterior teeth. Currently, occlusal veneers are an alternative for treating worn posterior teeth. Although scientific evidence demonstrates the good performance of lithium disilicate occlusal veneers, there are less brittle materials with a modulus of elasticity more similar to dentin than ceramics, such as resin CAD/CAM blocks. Therefore, it is important to identify which type of material is best for restoring teeth with occlusal wear defects and which material can provide better clinical performance. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search of the PubMed, Embase, Web of Science, Scopus, Cochrane, OpenGrey, Redalyc, DSpace, and Grey Literature Report databases was conducted and supplemented by a manual search, with no time or language limitations, until January 2022. We aimed to identify studies evaluating the fatigue and fracture resistance of CAD/CAM composite resin and ceramic occlusal veneers. The quality of the full-text articles was evaluated according to the modified Consolidated Standards of Reporting Trials (CONSORT) criteria for in vitro studies, and 400 articles were initially identified. After removing duplicates and applying the selection criteria, 6 studies were included in the review. The results demonstrated that the mechanical performance of CAD/CAM composite resin occlusal veneers is comparable to that of CAD/CAM lithium disilicate occlusal veneers in terms of fatigue and fracture resistance.</p>\",\"PeriodicalId\":11191,\"journal\":{\"name\":\"Dental and Medical Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dental and Medical Problems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17219/dmp/157347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental and Medical Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/dmp/157347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

严重的牙齿磨损与牙齿结构的大量损失、牙本质暴露和临床牙冠的显著损失(≥1/3)有关。本系统综述旨在总结和分析有关计算机辅助设计/计算机辅助制造(CAD/CAM)复合树脂和计算机辅助设计/计算机辅助制造二硅酸锂陶瓷咬合贴面在严重磨损后牙的抗疲劳和抗折性能方面的科学证据。目前,咬合贴面是治疗磨损后牙的一种替代方法。虽然科学证据表明二硅酸锂咬合贴面具有良好的性能,但也有比陶瓷脆性更低,弹性模量更接近牙本质的材料,如树脂 CAD/CAM 块。因此,确定哪种材料最适合修复有咬合磨损缺陷的牙齿以及哪种材料能提供更好的临床表现非常重要。本综述是根据系统综述和元分析首选报告项目(PRISMA)指南进行的。我们对 PubMed、Embase、Web of Science、Scopus、Cochrane、OpenGrey、Redalyc、DSpace 和 Grey Literature Report 数据库进行了全面检索,并在 2022 年 1 月之前进行了人工检索,没有时间或语言限制。我们的目标是找出评估 CAD/CAM 复合树脂和陶瓷咬合贴面抗疲劳和抗断裂性能的研究。根据修改后的体外研究报告试验标准(CONSORT)对全文文章的质量进行了评估,初步确定了 400 篇文章。在去除重复文章并应用筛选标准后,6 项研究被纳入综述。结果表明,CAD/CAM 复合树脂咬合贴面与 CAD/CAM 二硅酸锂咬合贴面在抗疲劳和抗断裂方面的机械性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resistance of CAD/CAM composite resin and ceramic occlusal veneers to fatigue and fracture in worn posterior teeth: A systematic review.

Severe tooth wear is related to substantial loss of tooth structure, with dentin exposure and significant loss (≥1/3) of the clinical crown. The objective of this systematic review was to summarize and analyze the scientific evidence regarding the mechanical performance of computer-aided design/computer-aided manufacturing (CAD/CAM) composite resin and CAD/CAM lithium disilicate ceramic occlusal veneers, in terms of fatigue and fracture resistance, on severely worn posterior teeth. Currently, occlusal veneers are an alternative for treating worn posterior teeth. Although scientific evidence demonstrates the good performance of lithium disilicate occlusal veneers, there are less brittle materials with a modulus of elasticity more similar to dentin than ceramics, such as resin CAD/CAM blocks. Therefore, it is important to identify which type of material is best for restoring teeth with occlusal wear defects and which material can provide better clinical performance. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A comprehensive search of the PubMed, Embase, Web of Science, Scopus, Cochrane, OpenGrey, Redalyc, DSpace, and Grey Literature Report databases was conducted and supplemented by a manual search, with no time or language limitations, until January 2022. We aimed to identify studies evaluating the fatigue and fracture resistance of CAD/CAM composite resin and ceramic occlusal veneers. The quality of the full-text articles was evaluated according to the modified Consolidated Standards of Reporting Trials (CONSORT) criteria for in vitro studies, and 400 articles were initially identified. After removing duplicates and applying the selection criteria, 6 studies were included in the review. The results demonstrated that the mechanical performance of CAD/CAM composite resin occlusal veneers is comparable to that of CAD/CAM lithium disilicate occlusal veneers in terms of fatigue and fracture resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
3.80%
发文量
58
审稿时长
53 weeks
期刊最新文献
Most common congenital syndromes with facial asymmetry: A narrative review. Self-assessment skills of undergraduate students in operative dentistry: Preclinical performance and gender. Optical properties of advanced lithium disilicate. Studies on the content of toxic metals in teeth: A narrative review of literature. Kinesio Taping as an alternative therapy for limited mandibular mobility with pain in female patients with temporomandibular disorders: A randomized controlled trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1