{"title":"使用两种成像板检测阿尔法粒子的成像板检测效率研究。","authors":"Fengdi Qin, Zhengzhong He, Zhongkai Fan, Kejun Lu, Haoxuan Li, Yizhe Luo, Xiyu Yang, Tianyu Deng, Xiangming Cai, Cong Sun, Jian Shan","doi":"10.1097/HP.0000000000001828","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Imaging plates can measure isotopes with alpha decay (such as radon and its progeny, americium, and so on). However, the detection efficiency of imaging plates is affected by alpha particle energy, types of imaging plates, and the overlapping effect. In this study, simulations were performed to analyze the relationship between detection efficiency and these three influence factors. The research findings suggest that BAS-TR and BAS-MS are well-suited for the detection of alpha particles with energy levels below 6.83 MeV and above, respectively. The track overlap effect correction method proposed in this study is applicable to both BAS-TR and BAS-MS image plates. The measurement results of radon progeny demonstrate that the correction method enhances the detection efficiency from 0.203 to 0.288. This study presents a valuable approach for selecting the appropriate image plate and correcting the track overlap effect in the measurement of alpha radioactive material concentration and other related information.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Detection Efficiency of Imaging Plates for Alpha Particles Using Two Types of Imaging Plate.\",\"authors\":\"Fengdi Qin, Zhengzhong He, Zhongkai Fan, Kejun Lu, Haoxuan Li, Yizhe Luo, Xiyu Yang, Tianyu Deng, Xiangming Cai, Cong Sun, Jian Shan\",\"doi\":\"10.1097/HP.0000000000001828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Imaging plates can measure isotopes with alpha decay (such as radon and its progeny, americium, and so on). However, the detection efficiency of imaging plates is affected by alpha particle energy, types of imaging plates, and the overlapping effect. In this study, simulations were performed to analyze the relationship between detection efficiency and these three influence factors. The research findings suggest that BAS-TR and BAS-MS are well-suited for the detection of alpha particles with energy levels below 6.83 MeV and above, respectively. The track overlap effect correction method proposed in this study is applicable to both BAS-TR and BAS-MS image plates. The measurement results of radon progeny demonstrate that the correction method enhances the detection efficiency from 0.203 to 0.288. This study presents a valuable approach for selecting the appropriate image plate and correcting the track overlap effect in the measurement of alpha radioactive material concentration and other related information.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001828\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001828","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Research on Detection Efficiency of Imaging Plates for Alpha Particles Using Two Types of Imaging Plate.
Abstract: Imaging plates can measure isotopes with alpha decay (such as radon and its progeny, americium, and so on). However, the detection efficiency of imaging plates is affected by alpha particle energy, types of imaging plates, and the overlapping effect. In this study, simulations were performed to analyze the relationship between detection efficiency and these three influence factors. The research findings suggest that BAS-TR and BAS-MS are well-suited for the detection of alpha particles with energy levels below 6.83 MeV and above, respectively. The track overlap effect correction method proposed in this study is applicable to both BAS-TR and BAS-MS image plates. The measurement results of radon progeny demonstrate that the correction method enhances the detection efficiency from 0.203 to 0.288. This study presents a valuable approach for selecting the appropriate image plate and correcting the track overlap effect in the measurement of alpha radioactive material concentration and other related information.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.