{"title":"核恐怖主义概率风险评估及其在假想核设施中的应用。","authors":"Joeun L Kot, Jason T Harris","doi":"10.1097/HP.0000000000001842","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Radiation protection contains the key elements of nuclear safety and security. Despite the overlap between nuclear safety and security, their objectives differ fundamentally, focusing on unintentional accidents and intentional malicious events, respectively. As such, the Potential Facility Risk Index (PFRI), originally created for security purposes, has evolved into an approach that combines conventional probabilistic risk assessment (PRA), which is a widely employed method to evaluate the safety risks of nuclear facilities. This research has developed a risk assessment model within the PFRI framework to calculate the probability of nuclear terrorism. Three essential components of the model are integrated: an analysis of historical nuclear terrorism data to determine an initial threat frequency; the target-specific factor using analytical hierarchy process (AHP) target attractiveness analysis; and the adversary motivation factor based on site-specific social influences from the Profiles of Individual Radicalization in the United States (PIRUS) dataset. Applied to a hypothetical nuclear facility, the model produces a nuclear terrorism probability of 8.97 × 10 -3 y - 1 . The systematic methodology proposed in the study enables the derivation of nuclear terrorism probability with results in the same risk unit as safety risk assessment. This method allows decision makers to seamlessly incorporate nuclear safety and security risk assessments, offering a comprehensive perspective. Consequently, it enriches comprehension of nuclear facility risks and establishes the groundwork for future advancements.</p>","PeriodicalId":12976,"journal":{"name":"Health physics","volume":" ","pages":"13-23"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk Assessment for Nuclear Terrorism Probability and Its Application on a Hypothetical Nuclear Facility.\",\"authors\":\"Joeun L Kot, Jason T Harris\",\"doi\":\"10.1097/HP.0000000000001842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Abstract: </strong>Radiation protection contains the key elements of nuclear safety and security. Despite the overlap between nuclear safety and security, their objectives differ fundamentally, focusing on unintentional accidents and intentional malicious events, respectively. As such, the Potential Facility Risk Index (PFRI), originally created for security purposes, has evolved into an approach that combines conventional probabilistic risk assessment (PRA), which is a widely employed method to evaluate the safety risks of nuclear facilities. This research has developed a risk assessment model within the PFRI framework to calculate the probability of nuclear terrorism. Three essential components of the model are integrated: an analysis of historical nuclear terrorism data to determine an initial threat frequency; the target-specific factor using analytical hierarchy process (AHP) target attractiveness analysis; and the adversary motivation factor based on site-specific social influences from the Profiles of Individual Radicalization in the United States (PIRUS) dataset. Applied to a hypothetical nuclear facility, the model produces a nuclear terrorism probability of 8.97 × 10 -3 y - 1 . The systematic methodology proposed in the study enables the derivation of nuclear terrorism probability with results in the same risk unit as safety risk assessment. This method allows decision makers to seamlessly incorporate nuclear safety and security risk assessments, offering a comprehensive perspective. Consequently, it enriches comprehension of nuclear facility risks and establishes the groundwork for future advancements.</p>\",\"PeriodicalId\":12976,\"journal\":{\"name\":\"Health physics\",\"volume\":\" \",\"pages\":\"13-23\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/HP.0000000000001842\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HP.0000000000001842","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
摘要:辐射防护包含核安全与核安保的关键要素。尽管核安全与核安保之间存在重叠,但两者的目标却有本质区别,分别侧重于非蓄意事故和蓄意恶意事件。因此,最初为安保目的而创建的 "潜在设施风险指数"(PFRI)已发展成为一种结合了传统概率风险评估(PRA)的方法,这是一种广泛用于评估核设施安全风险的方法。这项研究在 PFRI 框架内开发了一个风险评估模型,用于计算核恐怖主义的概率。该模型集成了三个基本组成部分:分析历史核恐怖主义数据以确定初始威胁频率;使用分析层次过程(AHP)进行目标吸引力分析的特定目标因素;以及基于美国个人激进化概况(PIRUS)数据集的特定场所社会影响的对手动机因素。将该模型应用于假定的核设施,可得出核恐怖主义概率为 8.97 × 10-3 y - 1。研究中提出的系统方法可推导出核恐怖主义概率,其结果与安全风险评估的风险单位相同。这种方法允许决策者将核安全与核安保风险评估无缝结合,提供了一个全面的视角。因此,它丰富了对核设施风险的理解,并为未来的进步奠定了基础。
Risk Assessment for Nuclear Terrorism Probability and Its Application on a Hypothetical Nuclear Facility.
Abstract: Radiation protection contains the key elements of nuclear safety and security. Despite the overlap between nuclear safety and security, their objectives differ fundamentally, focusing on unintentional accidents and intentional malicious events, respectively. As such, the Potential Facility Risk Index (PFRI), originally created for security purposes, has evolved into an approach that combines conventional probabilistic risk assessment (PRA), which is a widely employed method to evaluate the safety risks of nuclear facilities. This research has developed a risk assessment model within the PFRI framework to calculate the probability of nuclear terrorism. Three essential components of the model are integrated: an analysis of historical nuclear terrorism data to determine an initial threat frequency; the target-specific factor using analytical hierarchy process (AHP) target attractiveness analysis; and the adversary motivation factor based on site-specific social influences from the Profiles of Individual Radicalization in the United States (PIRUS) dataset. Applied to a hypothetical nuclear facility, the model produces a nuclear terrorism probability of 8.97 × 10 -3 y - 1 . The systematic methodology proposed in the study enables the derivation of nuclear terrorism probability with results in the same risk unit as safety risk assessment. This method allows decision makers to seamlessly incorporate nuclear safety and security risk assessments, offering a comprehensive perspective. Consequently, it enriches comprehension of nuclear facility risks and establishes the groundwork for future advancements.
期刊介绍:
Health Physics, first published in 1958, provides the latest research to a wide variety of radiation safety professionals including health physicists, nuclear chemists, medical physicists, and radiation safety officers with interests in nuclear and radiation science. The Journal allows professionals in these and other disciplines in science and engineering to stay on the cutting edge of scientific and technological advances in the field of radiation safety. The Journal publishes original papers, technical notes, articles on advances in practical applications, editorials, and correspondence. Journal articles report on the latest findings in theoretical, practical, and applied disciplines of epidemiology and radiation effects, radiation biology and radiation science, radiation ecology, and related fields.