{"title":"利用多频机载超声波干扰进行局部触觉刺激","authors":"Saya Mizutani, Shun Suzuki, Atsushi Matsubayashi, Masahiro Fujiwara, Yasutoshi Makino, Hiroyuki Shinoda","doi":"10.1109/TOH.2024.3416333","DOIUrl":null,"url":null,"abstract":"<p><p>In spatiotemporal modulation (STM) and lateral modulation (LM) used in conventional mid-air ultrasound tactile stimulation, single or multiple focuses are moved by switching the ultrasound transducer phases. A problem with the phase switching method is the limitation of the focus motion speed due to rapid phase switching that causes sound pressure fluctuations. This paper proposes an LM method using multiple-frequency ultrasound to shift the ultrasound focal point without switching the phase. This method can demonstrate a continuous and stable moving stimulus with high-frequency components, without producing unnecessary audible noise. Using the proposed broadband LM covering up to 400 Hz, we found that a high-frequency 400 Hz LM applied at a finger pad can display a stimulation area with the diameters comparable to or less than the half wavelength of 40 kHz ultrasound, where the perceptual size was evaluated as 4. 2 mm for the long axis diameter and 3. 4 mm for the short axis diameter.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Area Tactile Stimulation Using Interference of Multi-Frequency Airborne Ultrasound.\",\"authors\":\"Saya Mizutani, Shun Suzuki, Atsushi Matsubayashi, Masahiro Fujiwara, Yasutoshi Makino, Hiroyuki Shinoda\",\"doi\":\"10.1109/TOH.2024.3416333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In spatiotemporal modulation (STM) and lateral modulation (LM) used in conventional mid-air ultrasound tactile stimulation, single or multiple focuses are moved by switching the ultrasound transducer phases. A problem with the phase switching method is the limitation of the focus motion speed due to rapid phase switching that causes sound pressure fluctuations. This paper proposes an LM method using multiple-frequency ultrasound to shift the ultrasound focal point without switching the phase. This method can demonstrate a continuous and stable moving stimulus with high-frequency components, without producing unnecessary audible noise. Using the proposed broadband LM covering up to 400 Hz, we found that a high-frequency 400 Hz LM applied at a finger pad can display a stimulation area with the diameters comparable to or less than the half wavelength of 40 kHz ultrasound, where the perceptual size was evaluated as 4. 2 mm for the long axis diameter and 3. 4 mm for the short axis diameter.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2024.3416333\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3416333","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Local Area Tactile Stimulation Using Interference of Multi-Frequency Airborne Ultrasound.
In spatiotemporal modulation (STM) and lateral modulation (LM) used in conventional mid-air ultrasound tactile stimulation, single or multiple focuses are moved by switching the ultrasound transducer phases. A problem with the phase switching method is the limitation of the focus motion speed due to rapid phase switching that causes sound pressure fluctuations. This paper proposes an LM method using multiple-frequency ultrasound to shift the ultrasound focal point without switching the phase. This method can demonstrate a continuous and stable moving stimulus with high-frequency components, without producing unnecessary audible noise. Using the proposed broadband LM covering up to 400 Hz, we found that a high-frequency 400 Hz LM applied at a finger pad can display a stimulation area with the diameters comparable to or less than the half wavelength of 40 kHz ultrasound, where the perceptual size was evaluated as 4. 2 mm for the long axis diameter and 3. 4 mm for the short axis diameter.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.