Lesli E Skolarus, Chun Chieh Lin, Sonali Mishra, William Meurer, Mackenzie Dinh, Candace Whitfield, Ran Bi, Devin Brown, Rockefeller Oteng, Lorraine R Buis, Kelley Kidwell
{"title":"从安全网急诊科招募的参与者参与移动医疗提示的自我测量血压监测:Reach Out试验的二次分析。","authors":"Lesli E Skolarus, Chun Chieh Lin, Sonali Mishra, William Meurer, Mackenzie Dinh, Candace Whitfield, Ran Bi, Devin Brown, Rockefeller Oteng, Lorraine R Buis, Kelley Kidwell","doi":"10.2196/54946","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypertension, a key modifiable risk factor for cardiovascular disease, is more prevalent among Black and low-income individuals. To address this health disparity, leveraging safety-net emergency departments for scalable mobile health (mHealth) interventions, specifically using text messaging for self-measured blood pressure (SMBP) monitoring, presents a promising strategy. This study investigates patterns of engagement, associated factors, and the impact of engagement on lowering blood pressure (BP) in an underserved population.</p><p><strong>Objective: </strong>We aimed to identify patterns of engagement with prompted SMBP monitoring with feedback, factors associated with engagement, and the association of engagement with lowered BP.</p><p><strong>Methods: </strong>This is a secondary analysis of data from Reach Out, an mHealth, factorial trial among 488 hypertensive patients recruited from a safety-net emergency department in Flint, Michigan. Reach Out participants were randomized to weekly or daily text message prompts to measure their BP and text in their responses. Engagement was defined as a BP response to the prompt. The k-means clustering algorithm and visualization were used to determine the pattern of SMBP engagement by SMBP prompt frequency-weekly or daily. BP was remotely measured at 12 months. For each prompt frequency group, logistic regression models were used to assess the univariate association of demographics, access to care, and comorbidities with high engagement. We then used linear mixed-effects models to explore the association between engagement and systolic BP at 12 months, estimated using average marginal effects.</p><p><strong>Results: </strong>For both SMBP prompt groups, the optimal number of engagement clusters was 2, which we defined as high and low engagement. Of the 241 weekly participants, 189 (78.4%) were low (response rate: mean 20%, SD 23.4) engagers, and 52 (21.6%) were high (response rate: mean 86%, SD 14.7) engagers. Of the 247 daily participants, 221 (89.5%) were low engagers (response rate: mean 9%, SD 12.2), and 26 (10.5%) were high (response rate: mean 67%, SD 8.7) engagers. Among weekly participants, those who were older (>65 years of age), attended some college (vs no college), married or lived with someone, had Medicare (vs Medicaid), were under the care of a primary care doctor, and took antihypertensive medication in the last 6 months had higher odds of high engagement. Participants who lacked transportation to appointments had lower odds of high engagement. In both prompt frequency groups, participants who were high engagers had a greater decline in BP compared to low engagers.</p><p><strong>Conclusions: </strong>Participants randomized to weekly SMBP monitoring prompts responded more frequently overall and were more likely to be classed as high engagers compared to participants who received daily prompts. High engagement was associated with a larger decrease in BP. New strategies to encourage engagement are needed for participants with lower access to care.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"12 ","pages":"e54946"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186514/pdf/","citationCount":"0","resultStr":"{\"title\":\"Engagement in mHealth-Prompted Self-Measured Blood Pressure Monitoring Among Participants Recruited From a Safety-Net Emergency Department: Secondary Analysis of the Reach Out Trial.\",\"authors\":\"Lesli E Skolarus, Chun Chieh Lin, Sonali Mishra, William Meurer, Mackenzie Dinh, Candace Whitfield, Ran Bi, Devin Brown, Rockefeller Oteng, Lorraine R Buis, Kelley Kidwell\",\"doi\":\"10.2196/54946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hypertension, a key modifiable risk factor for cardiovascular disease, is more prevalent among Black and low-income individuals. To address this health disparity, leveraging safety-net emergency departments for scalable mobile health (mHealth) interventions, specifically using text messaging for self-measured blood pressure (SMBP) monitoring, presents a promising strategy. This study investigates patterns of engagement, associated factors, and the impact of engagement on lowering blood pressure (BP) in an underserved population.</p><p><strong>Objective: </strong>We aimed to identify patterns of engagement with prompted SMBP monitoring with feedback, factors associated with engagement, and the association of engagement with lowered BP.</p><p><strong>Methods: </strong>This is a secondary analysis of data from Reach Out, an mHealth, factorial trial among 488 hypertensive patients recruited from a safety-net emergency department in Flint, Michigan. Reach Out participants were randomized to weekly or daily text message prompts to measure their BP and text in their responses. Engagement was defined as a BP response to the prompt. The k-means clustering algorithm and visualization were used to determine the pattern of SMBP engagement by SMBP prompt frequency-weekly or daily. BP was remotely measured at 12 months. For each prompt frequency group, logistic regression models were used to assess the univariate association of demographics, access to care, and comorbidities with high engagement. We then used linear mixed-effects models to explore the association between engagement and systolic BP at 12 months, estimated using average marginal effects.</p><p><strong>Results: </strong>For both SMBP prompt groups, the optimal number of engagement clusters was 2, which we defined as high and low engagement. Of the 241 weekly participants, 189 (78.4%) were low (response rate: mean 20%, SD 23.4) engagers, and 52 (21.6%) were high (response rate: mean 86%, SD 14.7) engagers. Of the 247 daily participants, 221 (89.5%) were low engagers (response rate: mean 9%, SD 12.2), and 26 (10.5%) were high (response rate: mean 67%, SD 8.7) engagers. Among weekly participants, those who were older (>65 years of age), attended some college (vs no college), married or lived with someone, had Medicare (vs Medicaid), were under the care of a primary care doctor, and took antihypertensive medication in the last 6 months had higher odds of high engagement. Participants who lacked transportation to appointments had lower odds of high engagement. In both prompt frequency groups, participants who were high engagers had a greater decline in BP compared to low engagers.</p><p><strong>Conclusions: </strong>Participants randomized to weekly SMBP monitoring prompts responded more frequently overall and were more likely to be classed as high engagers compared to participants who received daily prompts. High engagement was associated with a larger decrease in BP. New strategies to encourage engagement are needed for participants with lower access to care.</p>\",\"PeriodicalId\":14756,\"journal\":{\"name\":\"JMIR mHealth and uHealth\",\"volume\":\"12 \",\"pages\":\"e54946\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186514/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR mHealth and uHealth\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/54946\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/54946","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Engagement in mHealth-Prompted Self-Measured Blood Pressure Monitoring Among Participants Recruited From a Safety-Net Emergency Department: Secondary Analysis of the Reach Out Trial.
Background: Hypertension, a key modifiable risk factor for cardiovascular disease, is more prevalent among Black and low-income individuals. To address this health disparity, leveraging safety-net emergency departments for scalable mobile health (mHealth) interventions, specifically using text messaging for self-measured blood pressure (SMBP) monitoring, presents a promising strategy. This study investigates patterns of engagement, associated factors, and the impact of engagement on lowering blood pressure (BP) in an underserved population.
Objective: We aimed to identify patterns of engagement with prompted SMBP monitoring with feedback, factors associated with engagement, and the association of engagement with lowered BP.
Methods: This is a secondary analysis of data from Reach Out, an mHealth, factorial trial among 488 hypertensive patients recruited from a safety-net emergency department in Flint, Michigan. Reach Out participants were randomized to weekly or daily text message prompts to measure their BP and text in their responses. Engagement was defined as a BP response to the prompt. The k-means clustering algorithm and visualization were used to determine the pattern of SMBP engagement by SMBP prompt frequency-weekly or daily. BP was remotely measured at 12 months. For each prompt frequency group, logistic regression models were used to assess the univariate association of demographics, access to care, and comorbidities with high engagement. We then used linear mixed-effects models to explore the association between engagement and systolic BP at 12 months, estimated using average marginal effects.
Results: For both SMBP prompt groups, the optimal number of engagement clusters was 2, which we defined as high and low engagement. Of the 241 weekly participants, 189 (78.4%) were low (response rate: mean 20%, SD 23.4) engagers, and 52 (21.6%) were high (response rate: mean 86%, SD 14.7) engagers. Of the 247 daily participants, 221 (89.5%) were low engagers (response rate: mean 9%, SD 12.2), and 26 (10.5%) were high (response rate: mean 67%, SD 8.7) engagers. Among weekly participants, those who were older (>65 years of age), attended some college (vs no college), married or lived with someone, had Medicare (vs Medicaid), were under the care of a primary care doctor, and took antihypertensive medication in the last 6 months had higher odds of high engagement. Participants who lacked transportation to appointments had lower odds of high engagement. In both prompt frequency groups, participants who were high engagers had a greater decline in BP compared to low engagers.
Conclusions: Participants randomized to weekly SMBP monitoring prompts responded more frequently overall and were more likely to be classed as high engagers compared to participants who received daily prompts. High engagement was associated with a larger decrease in BP. New strategies to encourage engagement are needed for participants with lower access to care.
期刊介绍:
JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636.
The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics.
JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.