Dinh Minh Tran, To Uyen Huynh, Tu Oanh Do, Anh Dzung Nguyen
{"title":"一种新型 Paenibacillus 菌种的分离、植物生长促进特性和全基因组序列。","authors":"Dinh Minh Tran, To Uyen Huynh, Tu Oanh Do, Anh Dzung Nguyen","doi":"10.1002/jobm.202400119","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work aimed to isolate and characterize a novel chitin-degrading bacterium from Yok Don National Park, Vietnam, for crop production studies. Among the chitinolytic isolates, strain YSY-4.3 was selected, which grew rapidly and produced a large halo around the colony. 16S rDNA analysis indicated that the strain is a novel species in the genus <i>Paenibacillus</i>, and an in vitro evaluation showed that the strain produced phytohormones (IAA, GA3, and zeatin), biofilms, and siderophores; possessed cellulase; and exerted antifungal activity. The whole genome of the strain was 5,628,400 bp with 49.3% GC content, 5056 coding sequences, 48 tRNA, and 1 rRNA. It shared the highest values of digital DNA–DNA hybridization (67.4%) and average nucleotide identity (89.54%) with those of <i>Paenibacillus woosongensis</i> B2_4 (CP126084.1), suggesting a novel species. Of the coding sequences, 4287 proteins were identified by COG, and 2561 were assigned by KEGG. The genome contained at least 51 genes involved in plant growth and resistance to heavy-metal toxicity and 359 carbohydrate-active enzymes. The chitinolytic system of the strain was composed of 15 enzymes, among them, PsChiC, which contained a GH18 catalytic domain and a GH5 catalytic domain, had not been previously reported. In addition, the genome possessed 15 gene clusters encoding antimicrobial metabolites, 10 of which are possible novel clusters. This study expands knowledge regarding novel chitinolytic bacteria from Yok Don National Park and provides a valuable gene resource for future studies.</p>\n </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":"64 9","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation, Plant Growth-Promoting Properties, and Whole-Genome Sequence of a Novel Paenibacillus Species\",\"authors\":\"Dinh Minh Tran, To Uyen Huynh, Tu Oanh Do, Anh Dzung Nguyen\",\"doi\":\"10.1002/jobm.202400119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This work aimed to isolate and characterize a novel chitin-degrading bacterium from Yok Don National Park, Vietnam, for crop production studies. Among the chitinolytic isolates, strain YSY-4.3 was selected, which grew rapidly and produced a large halo around the colony. 16S rDNA analysis indicated that the strain is a novel species in the genus <i>Paenibacillus</i>, and an in vitro evaluation showed that the strain produced phytohormones (IAA, GA3, and zeatin), biofilms, and siderophores; possessed cellulase; and exerted antifungal activity. The whole genome of the strain was 5,628,400 bp with 49.3% GC content, 5056 coding sequences, 48 tRNA, and 1 rRNA. It shared the highest values of digital DNA–DNA hybridization (67.4%) and average nucleotide identity (89.54%) with those of <i>Paenibacillus woosongensis</i> B2_4 (CP126084.1), suggesting a novel species. Of the coding sequences, 4287 proteins were identified by COG, and 2561 were assigned by KEGG. The genome contained at least 51 genes involved in plant growth and resistance to heavy-metal toxicity and 359 carbohydrate-active enzymes. The chitinolytic system of the strain was composed of 15 enzymes, among them, PsChiC, which contained a GH18 catalytic domain and a GH5 catalytic domain, had not been previously reported. In addition, the genome possessed 15 gene clusters encoding antimicrobial metabolites, 10 of which are possible novel clusters. This study expands knowledge regarding novel chitinolytic bacteria from Yok Don National Park and provides a valuable gene resource for future studies.</p>\\n </div>\",\"PeriodicalId\":15101,\"journal\":{\"name\":\"Journal of Basic Microbiology\",\"volume\":\"64 9\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Basic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202400119\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202400119","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Isolation, Plant Growth-Promoting Properties, and Whole-Genome Sequence of a Novel Paenibacillus Species
This work aimed to isolate and characterize a novel chitin-degrading bacterium from Yok Don National Park, Vietnam, for crop production studies. Among the chitinolytic isolates, strain YSY-4.3 was selected, which grew rapidly and produced a large halo around the colony. 16S rDNA analysis indicated that the strain is a novel species in the genus Paenibacillus, and an in vitro evaluation showed that the strain produced phytohormones (IAA, GA3, and zeatin), biofilms, and siderophores; possessed cellulase; and exerted antifungal activity. The whole genome of the strain was 5,628,400 bp with 49.3% GC content, 5056 coding sequences, 48 tRNA, and 1 rRNA. It shared the highest values of digital DNA–DNA hybridization (67.4%) and average nucleotide identity (89.54%) with those of Paenibacillus woosongensis B2_4 (CP126084.1), suggesting a novel species. Of the coding sequences, 4287 proteins were identified by COG, and 2561 were assigned by KEGG. The genome contained at least 51 genes involved in plant growth and resistance to heavy-metal toxicity and 359 carbohydrate-active enzymes. The chitinolytic system of the strain was composed of 15 enzymes, among them, PsChiC, which contained a GH18 catalytic domain and a GH5 catalytic domain, had not been previously reported. In addition, the genome possessed 15 gene clusters encoding antimicrobial metabolites, 10 of which are possible novel clusters. This study expands knowledge regarding novel chitinolytic bacteria from Yok Don National Park and provides a valuable gene resource for future studies.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).