Xin-Yuan Zhang, Yi Sui, Xiao-Feng Shan, Lu-Ming Wang, Lei Zhang, Shang Xie, Zhi-Gang Cai
{"title":"构建用于药物筛选的体外三维培养口腔鳞状细胞癌器官组织。","authors":"Xin-Yuan Zhang, Yi Sui, Xiao-Feng Shan, Lu-Ming Wang, Lei Zhang, Shang Xie, Zhi-Gang Cai","doi":"10.1111/odi.15044","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Patient-derived organoids are potent pre-chemotherapy models. Due to limited research on diverse types of oral squamous cell carcinoma (OSCC) and construction efficiency, our goal was to optimize OSCC organoid models from various sites and assess drug responsiveness.</p><p><strong>Methods: </strong>We screened and optimized culture media, employing three-dimensional techniques to construct human-derived oral squamous cell carcinoma (OSCC) organoid models in vitro. Morphological validation, immunofluorescence analysis, tissue origin verification, and Short Tandem Repeat (STR) sequencing confirmed the consistency between organoids and source tissues. These organoid models were then subjected to varying concentrations of anticancer drugs, with subsequent assessment of cell viability to calculate IC50 values.</p><p><strong>Results: </strong>Twenty-nine surgical specimens yielded an 86.2% success rate in culturing 25 organoids in vitro. Morphological consistency confirmed nuclear atypia and positive expression of K5, P40, and E-cadherin, indicating squamous epithelial origin. Cultured complex organoids included α-SMA+ tumour-associated fibroblasts and tumour stem cells expressing CD44 and Ki67. STR sequencing affirmed genomic homogeneity between cultured organoids and source tissues. Drug sensitivity testing revealed diverse responses among organoids, highlighting their value for assessing drug sensitivity.</p><p><strong>Conclusions: </strong>An efficient OSCC organoid culture system for personalized in vitro drug sensitivity screening was established, laying the foundation for precise treatment development.</p>","PeriodicalId":19615,"journal":{"name":"Oral diseases","volume":" ","pages":"99-109"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of oral squamous cell carcinoma organoids in vitro 3D-culture for drug screening.\",\"authors\":\"Xin-Yuan Zhang, Yi Sui, Xiao-Feng Shan, Lu-Ming Wang, Lei Zhang, Shang Xie, Zhi-Gang Cai\",\"doi\":\"10.1111/odi.15044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Patient-derived organoids are potent pre-chemotherapy models. Due to limited research on diverse types of oral squamous cell carcinoma (OSCC) and construction efficiency, our goal was to optimize OSCC organoid models from various sites and assess drug responsiveness.</p><p><strong>Methods: </strong>We screened and optimized culture media, employing three-dimensional techniques to construct human-derived oral squamous cell carcinoma (OSCC) organoid models in vitro. Morphological validation, immunofluorescence analysis, tissue origin verification, and Short Tandem Repeat (STR) sequencing confirmed the consistency between organoids and source tissues. These organoid models were then subjected to varying concentrations of anticancer drugs, with subsequent assessment of cell viability to calculate IC50 values.</p><p><strong>Results: </strong>Twenty-nine surgical specimens yielded an 86.2% success rate in culturing 25 organoids in vitro. Morphological consistency confirmed nuclear atypia and positive expression of K5, P40, and E-cadherin, indicating squamous epithelial origin. Cultured complex organoids included α-SMA+ tumour-associated fibroblasts and tumour stem cells expressing CD44 and Ki67. STR sequencing affirmed genomic homogeneity between cultured organoids and source tissues. Drug sensitivity testing revealed diverse responses among organoids, highlighting their value for assessing drug sensitivity.</p><p><strong>Conclusions: </strong>An efficient OSCC organoid culture system for personalized in vitro drug sensitivity screening was established, laying the foundation for precise treatment development.</p>\",\"PeriodicalId\":19615,\"journal\":{\"name\":\"Oral diseases\",\"volume\":\" \",\"pages\":\"99-109\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/odi.15044\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/odi.15044","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Construction of oral squamous cell carcinoma organoids in vitro 3D-culture for drug screening.
Objective: Patient-derived organoids are potent pre-chemotherapy models. Due to limited research on diverse types of oral squamous cell carcinoma (OSCC) and construction efficiency, our goal was to optimize OSCC organoid models from various sites and assess drug responsiveness.
Methods: We screened and optimized culture media, employing three-dimensional techniques to construct human-derived oral squamous cell carcinoma (OSCC) organoid models in vitro. Morphological validation, immunofluorescence analysis, tissue origin verification, and Short Tandem Repeat (STR) sequencing confirmed the consistency between organoids and source tissues. These organoid models were then subjected to varying concentrations of anticancer drugs, with subsequent assessment of cell viability to calculate IC50 values.
Results: Twenty-nine surgical specimens yielded an 86.2% success rate in culturing 25 organoids in vitro. Morphological consistency confirmed nuclear atypia and positive expression of K5, P40, and E-cadherin, indicating squamous epithelial origin. Cultured complex organoids included α-SMA+ tumour-associated fibroblasts and tumour stem cells expressing CD44 and Ki67. STR sequencing affirmed genomic homogeneity between cultured organoids and source tissues. Drug sensitivity testing revealed diverse responses among organoids, highlighting their value for assessing drug sensitivity.
Conclusions: An efficient OSCC organoid culture system for personalized in vitro drug sensitivity screening was established, laying the foundation for precise treatment development.
期刊介绍:
Oral Diseases is a multidisciplinary and international journal with a focus on head and neck disorders, edited by leaders in the field, Professor Giovanni Lodi (Editor-in-Chief, Milan, Italy), Professor Stefano Petti (Deputy Editor, Rome, Italy) and Associate Professor Gulshan Sunavala-Dossabhoy (Deputy Editor, Shreveport, LA, USA). The journal is pre-eminent in oral medicine. Oral Diseases specifically strives to link often-isolated areas of dentistry and medicine through broad-based scholarship that includes well-designed and controlled clinical research, analytical epidemiology, and the translation of basic science in pre-clinical studies. The journal typically publishes articles relevant to many related medical specialties including especially dermatology, gastroenterology, hematology, immunology, infectious diseases, neuropsychiatry, oncology and otolaryngology. The essential requirement is that all submitted research is hypothesis-driven, with significant positive and negative results both welcomed. Equal publication emphasis is placed on etiology, pathogenesis, diagnosis, prevention and treatment.