Fatih Gulec;Damla Yagmur Koda;Baris Atakan;Andrew W. Eckford
{"title":"利用基于传感器网络的分子通信实验平台确定无源信号源的位置","authors":"Fatih Gulec;Damla Yagmur Koda;Baris Atakan;Andrew W. Eckford","doi":"10.1109/TMBMC.2024.3375236","DOIUrl":null,"url":null,"abstract":"In a practical molecular communication scenario such as monitoring air pollutants released from an unknown source, it is essential to estimate the location of the molecular transmitter (TX). This paper presents a novel Sensor Network-based Localization Algorithm (SNCLA) for passive transmission by using a novel experimental platform which mainly comprises a clustered sensor network (SN) with 24 sensor nodes and evaporating ethanol molecules as the passive TX. In SNCLA, a Gaussian plume model is employed to derive the location estimator. The parameters such as transmitted mass, wind velocity, detection time, and actual concentration are calculated or estimated from the measured signals via the SN to be employed as the input for the location estimator. The numerical results show that the performance of SNCLA is better for stronger winds in the medium. Our findings show that evaporated molecules do not propagate homogeneously through the SN due to the presence of the wind. In addition, our statistical analysis based on the measured experimental data shows that the sensed signals by the SN have a log-normal distribution, while the additive noise follows a Student’s t-distribution in contrast to the Gaussian assumption in the literature.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Localization of a Passive Source With a Sensor Network-Based Experimental Molecular Communication Platform\",\"authors\":\"Fatih Gulec;Damla Yagmur Koda;Baris Atakan;Andrew W. Eckford\",\"doi\":\"10.1109/TMBMC.2024.3375236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a practical molecular communication scenario such as monitoring air pollutants released from an unknown source, it is essential to estimate the location of the molecular transmitter (TX). This paper presents a novel Sensor Network-based Localization Algorithm (SNCLA) for passive transmission by using a novel experimental platform which mainly comprises a clustered sensor network (SN) with 24 sensor nodes and evaporating ethanol molecules as the passive TX. In SNCLA, a Gaussian plume model is employed to derive the location estimator. The parameters such as transmitted mass, wind velocity, detection time, and actual concentration are calculated or estimated from the measured signals via the SN to be employed as the input for the location estimator. The numerical results show that the performance of SNCLA is better for stronger winds in the medium. Our findings show that evaporated molecules do not propagate homogeneously through the SN due to the presence of the wind. In addition, our statistical analysis based on the measured experimental data shows that the sensed signals by the SN have a log-normal distribution, while the additive noise follows a Student’s t-distribution in contrast to the Gaussian assumption in the literature.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10470431/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10470431/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
在实际分子通信场景中,例如监测未知来源释放的空气污染物时,估算分子发射器(TX)的位置至关重要。本文利用一个新颖的实验平台,提出了一种用于无源传输的基于传感器网络的新型定位算法(SNCLA),该平台主要包括一个由 24 个传感器节点组成的集群传感器网络(SN)和作为无源发射机的蒸发乙醇分子。SNCLA 采用高斯羽流模型来推导位置估计器。传输质量、风速、检测时间和实际浓度等参数都是通过传感器网络从测量信号中计算或估计出来的,作为位置估计器的输入。数值结果表明,SNCLA 在介质风力较强的情况下性能更好。我们的研究结果表明,由于风的存在,蒸发的分子并不能均匀地通过 SN 传播。此外,我们根据测量到的实验数据进行的统计分析显示,SN 感测到的信号呈对数正态分布,而加性噪声则呈 Student's t 分布,这与文献中的高斯假设不同。
Localization of a Passive Source With a Sensor Network-Based Experimental Molecular Communication Platform
In a practical molecular communication scenario such as monitoring air pollutants released from an unknown source, it is essential to estimate the location of the molecular transmitter (TX). This paper presents a novel Sensor Network-based Localization Algorithm (SNCLA) for passive transmission by using a novel experimental platform which mainly comprises a clustered sensor network (SN) with 24 sensor nodes and evaporating ethanol molecules as the passive TX. In SNCLA, a Gaussian plume model is employed to derive the location estimator. The parameters such as transmitted mass, wind velocity, detection time, and actual concentration are calculated or estimated from the measured signals via the SN to be employed as the input for the location estimator. The numerical results show that the performance of SNCLA is better for stronger winds in the medium. Our findings show that evaporated molecules do not propagate homogeneously through the SN due to the presence of the wind. In addition, our statistical analysis based on the measured experimental data shows that the sensed signals by the SN have a log-normal distribution, while the additive noise follows a Student’s t-distribution in contrast to the Gaussian assumption in the literature.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.