基于深度强化学习的测井日志深度自动匹配方法

IF 7 Q1 ENERGY & FUELS Petroleum Exploration and Development Pub Date : 2024-06-01 DOI:10.1016/S1876-3804(24)60493-3
Wenjun XIONG , Lizhi XIAO , Jiangru YUAN , Wenzheng YUE
{"title":"基于深度强化学习的测井日志深度自动匹配方法","authors":"Wenjun XIONG ,&nbsp;Lizhi XIAO ,&nbsp;Jiangru YUAN ,&nbsp;Wenzheng YUE","doi":"10.1016/S1876-3804(24)60493-3","DOIUrl":null,"url":null,"abstract":"<div><p>In the traditional well log depth matching tasks, manual adjustments are required, which means significantly labor-intensive for multiple wells, leading to low work efficiency. This paper introduces a multi-agent deep reinforcement learning (MARL) method to automate the depth matching of multi-well logs. This method defines multiple top-down dual sliding windows based on the convolutional neural network (CNN) to extract and capture similar feature sequences on well logs, and it establishes an interaction mechanism between agents and the environment to control the depth matching process. Specifically, the agent selects an action to translate or scale the feature sequence based on the double deep <em>Q</em>-network (DDQN). Through the feedback of the reward signal, it evaluates the effectiveness of each action, aiming to obtain the optimal strategy and improve the accuracy of the matching task. Our experiments show that MARL can automatically perform depth matches for well-logs in multiple wells, and reduce manual intervention. In the application to the oil field, a comparative analysis of dynamic time warping (DTW), deep <em>Q</em>-learning network (DQN), and DDQN methods revealed that the DDQN algorithm, with its dual-network evaluation mechanism, significantly improves performance by identifying and aligning more details in the well log feature sequences, thus achieving higher depth matching accuracy.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 3","pages":"Pages 634-646"},"PeriodicalIF":7.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424604933/pdf?md5=9e683dbc598bf60d9b0963ee0852fae7&pid=1-s2.0-S1876380424604933-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automatic depth matching method of well log based on deep reinforcement learning\",\"authors\":\"Wenjun XIONG ,&nbsp;Lizhi XIAO ,&nbsp;Jiangru YUAN ,&nbsp;Wenzheng YUE\",\"doi\":\"10.1016/S1876-3804(24)60493-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the traditional well log depth matching tasks, manual adjustments are required, which means significantly labor-intensive for multiple wells, leading to low work efficiency. This paper introduces a multi-agent deep reinforcement learning (MARL) method to automate the depth matching of multi-well logs. This method defines multiple top-down dual sliding windows based on the convolutional neural network (CNN) to extract and capture similar feature sequences on well logs, and it establishes an interaction mechanism between agents and the environment to control the depth matching process. Specifically, the agent selects an action to translate or scale the feature sequence based on the double deep <em>Q</em>-network (DDQN). Through the feedback of the reward signal, it evaluates the effectiveness of each action, aiming to obtain the optimal strategy and improve the accuracy of the matching task. Our experiments show that MARL can automatically perform depth matches for well-logs in multiple wells, and reduce manual intervention. In the application to the oil field, a comparative analysis of dynamic time warping (DTW), deep <em>Q</em>-learning network (DQN), and DDQN methods revealed that the DDQN algorithm, with its dual-network evaluation mechanism, significantly improves performance by identifying and aligning more details in the well log feature sequences, thus achieving higher depth matching accuracy.</p></div>\",\"PeriodicalId\":67426,\"journal\":{\"name\":\"Petroleum Exploration and Development\",\"volume\":\"51 3\",\"pages\":\"Pages 634-646\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1876380424604933/pdf?md5=9e683dbc598bf60d9b0963ee0852fae7&pid=1-s2.0-S1876380424604933-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Exploration and Development\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876380424604933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380424604933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在传统的测井日志深度匹配任务中,需要进行人工调整,这对于多口井而言意味着极大的劳动密集型,导致工作效率低下。本文介绍了一种多代理深度强化学习(MARL)方法,以实现多井测井深度匹配的自动化。该方法基于卷积神经网络(CNN)定义了多个自上而下的双滑动窗口,以提取和捕捉测井记录上的相似特征序列,并建立了代理与环境之间的交互机制来控制深度匹配过程。具体来说,代理根据双深度 Q 网络(DDQN)选择一个动作来平移或缩放特征序列。通过奖励信号的反馈,它可以评估每个动作的有效性,从而获得最佳策略,提高匹配任务的准确性。我们的实验表明,MARL 可以自动执行多口井的井线深度匹配,减少人工干预。在油田应用中,对动态时间扭曲(DTW)、深度 Q-learning 网络(DQN)和 DDQN 方法的对比分析表明,采用双网络评估机制的 DDQN 算法通过识别和对齐更多的测井日志特征序列细节,显著提高了性能,从而实现了更高的深度匹配精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic depth matching method of well log based on deep reinforcement learning

In the traditional well log depth matching tasks, manual adjustments are required, which means significantly labor-intensive for multiple wells, leading to low work efficiency. This paper introduces a multi-agent deep reinforcement learning (MARL) method to automate the depth matching of multi-well logs. This method defines multiple top-down dual sliding windows based on the convolutional neural network (CNN) to extract and capture similar feature sequences on well logs, and it establishes an interaction mechanism between agents and the environment to control the depth matching process. Specifically, the agent selects an action to translate or scale the feature sequence based on the double deep Q-network (DDQN). Through the feedback of the reward signal, it evaluates the effectiveness of each action, aiming to obtain the optimal strategy and improve the accuracy of the matching task. Our experiments show that MARL can automatically perform depth matches for well-logs in multiple wells, and reduce manual intervention. In the application to the oil field, a comparative analysis of dynamic time warping (DTW), deep Q-learning network (DQN), and DDQN methods revealed that the DDQN algorithm, with its dual-network evaluation mechanism, significantly improves performance by identifying and aligning more details in the well log feature sequences, thus achieving higher depth matching accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
期刊最新文献
Accumulation sequence and exploration domain of continental whole petroleum system in Sichuan Basin, SW China Tectonic evolution and source rocks development of the super oil-rich Bohai Bay Basin, East China Impact of Tethyan domain evolution on the formation of petroleum systems in the Sichuan super basin, SW China Fracture-controlled fracturing mechanism and penetration discrimination criteria for thin sand-mud interbedded reservoirs in Sulige gas field, Ordos Basin, China Helium enrichment theory and exploration ideas for helium-rich gas reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1