氮掺杂介孔碳与碳纳米管结合作为对电极催化剂,用于量子点敏化太阳能电池,效率创历史新高

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-06-18 DOI:10.1016/j.solener.2024.112699
Junjie Zeng, Wenran Wang, Yu Lin, Zhengyan Zhang, Ziwei Li, Huashang Rao, Zhenxiao Pan, Xinhua Zhong
{"title":"氮掺杂介孔碳与碳纳米管结合作为对电极催化剂,用于量子点敏化太阳能电池,效率创历史新高","authors":"Junjie Zeng,&nbsp;Wenran Wang,&nbsp;Yu Lin,&nbsp;Zhengyan Zhang,&nbsp;Ziwei Li,&nbsp;Huashang Rao,&nbsp;Zhenxiao Pan,&nbsp;Xinhua Zhong","doi":"10.1016/j.solener.2024.112699","DOIUrl":null,"url":null,"abstract":"<div><p>The fabrication of a counter electrode possessing elevated catalytic efficiency and steadfast stability is a crucial prerequisite for the high-performance quantum dot sensitized solar cells (QDSCs). Mesoporous carbon (MC) has been adopted as the desired CE material in the past years, but the disadvantage of its poor conductivity has limited further development of the performance of QDSCs. In this study, we present a straightforward approach for producing highly effective counter electrodes through the integration of nitrogen-doped mesoporous carbon (N-MC) with carbon nanotubes (CNTs), forming a composite material that is deposited onto a titanium mesh substrate. The counter electrode (CE) based on composite materials shows excellent electrocatalytic performance, synergistically benefiting from large specific areas of N-MC and high conductivity of CNTs. Electrochemical measurements reveal that the optimal CEs exhibit excellent catalytic reduction activity as well as high electron mobility. Consequently, the corresponding QDSCs show a record power conversion efficiency of 16.68 %.</p></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-doped mesoporous carbon combined with carbon nanotubes as counter electrode catalysts for quantum dot sensitized solar cells with record efficiency\",\"authors\":\"Junjie Zeng,&nbsp;Wenran Wang,&nbsp;Yu Lin,&nbsp;Zhengyan Zhang,&nbsp;Ziwei Li,&nbsp;Huashang Rao,&nbsp;Zhenxiao Pan,&nbsp;Xinhua Zhong\",\"doi\":\"10.1016/j.solener.2024.112699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The fabrication of a counter electrode possessing elevated catalytic efficiency and steadfast stability is a crucial prerequisite for the high-performance quantum dot sensitized solar cells (QDSCs). Mesoporous carbon (MC) has been adopted as the desired CE material in the past years, but the disadvantage of its poor conductivity has limited further development of the performance of QDSCs. In this study, we present a straightforward approach for producing highly effective counter electrodes through the integration of nitrogen-doped mesoporous carbon (N-MC) with carbon nanotubes (CNTs), forming a composite material that is deposited onto a titanium mesh substrate. The counter electrode (CE) based on composite materials shows excellent electrocatalytic performance, synergistically benefiting from large specific areas of N-MC and high conductivity of CNTs. Electrochemical measurements reveal that the optimal CEs exhibit excellent catalytic reduction activity as well as high electron mobility. Consequently, the corresponding QDSCs show a record power conversion efficiency of 16.68 %.</p></div>\",\"PeriodicalId\":428,\"journal\":{\"name\":\"Solar Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038092X24003943\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24003943","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

制备具有较高催化效率和稳定性的对电极是实现高性能量子点敏化太阳能电池(QDSCs)的重要前提。介孔碳(MC)在过去几年中一直被用作理想的CE材料,但其导电性差的缺点限制了QDSCs性能的进一步发展。在本研究中,我们提出了一种生产高效对电极的直接方法,即通过将氮掺杂介孔碳(N-MC)与碳纳米管(CNTs)整合在一起,形成一种沉积在钛网基底上的复合材料。N-MC 的大比面积和 CNT 的高导电性协同作用,使基于复合材料的对电极(CE)显示出卓越的电催化性能。电化学测量结果表明,最佳 CE 具有出色的催化还原活性和高电子迁移率。因此,相应的 QDSCs 显示出 16.68% 的创纪录功率转换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrogen-doped mesoporous carbon combined with carbon nanotubes as counter electrode catalysts for quantum dot sensitized solar cells with record efficiency

The fabrication of a counter electrode possessing elevated catalytic efficiency and steadfast stability is a crucial prerequisite for the high-performance quantum dot sensitized solar cells (QDSCs). Mesoporous carbon (MC) has been adopted as the desired CE material in the past years, but the disadvantage of its poor conductivity has limited further development of the performance of QDSCs. In this study, we present a straightforward approach for producing highly effective counter electrodes through the integration of nitrogen-doped mesoporous carbon (N-MC) with carbon nanotubes (CNTs), forming a composite material that is deposited onto a titanium mesh substrate. The counter electrode (CE) based on composite materials shows excellent electrocatalytic performance, synergistically benefiting from large specific areas of N-MC and high conductivity of CNTs. Electrochemical measurements reveal that the optimal CEs exhibit excellent catalytic reduction activity as well as high electron mobility. Consequently, the corresponding QDSCs show a record power conversion efficiency of 16.68 %.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Experimental study of the solar chimney effect in naturally ventilated BIPV cladding system under real operating condition Exploring the influence of switching frequency on the stability in a weak grid: A comprehensive analysis of grid-connected photovoltaic systems Experimental study and simulation of Hybrid-Active solar thermal cylindrical chamber for Citrus Hystrix leaves drying High-efficiency 3D solar evaporators with the PSAVF strategy for achieving excellent salt resistance Design of multi-objective optimized dynamic photovoltaic shades and thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1