深部热流体活动下氦的遗传源、迁移和积累:南海莺歌海盆地乐东断陷区案例研究

IF 7 Q1 ENERGY & FUELS Petroleum Exploration and Development Pub Date : 2024-06-01 DOI:10.1016/S1876-3804(24)60503-3
Ziqi FENG , Fang HAO , Lin HU , Gaowei HU , Yazhen ZHANG , Yangming LI , Wei WANG , Hao LI , Junjie XIAO , Jinqiang TIAN
{"title":"深部热流体活动下氦的遗传源、迁移和积累:南海莺歌海盆地乐东断陷区案例研究","authors":"Ziqi FENG ,&nbsp;Fang HAO ,&nbsp;Lin HU ,&nbsp;Gaowei HU ,&nbsp;Yazhen ZHANG ,&nbsp;Yangming LI ,&nbsp;Wei WANG ,&nbsp;Hao LI ,&nbsp;Junjie XIAO ,&nbsp;Jinqiang TIAN","doi":"10.1016/S1876-3804(24)60503-3","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the geochemical parameters and analytical data, the heat conservation equation, mass balance law, Rayleigh fractionation model and other methods were used to quantify the in-situ yield and external flux of crust-derived helium, and the initial He concentration and thermal driving mechanism of mantle-derived helium, in the Ledong Diapir area, the Yinggehai Basin, in order to understand the genetic source, migration and accumulation mechanisms of helium under deep thermal fluid activities. The average content of mantle-derived He is only 0.001 4%, the <sup>3</sup>He/<sup>4</sup>He value is (0.002–2.190)×10<sup>−6</sup>, and the <em>R</em>/<em>R</em><sub>a</sub> value ranges from 0.01 to 1.52, indicating the contribution of mantle-derived He is 0.09%–19.84%, while the proportion of crust-derived helium can reach over 80%. Quantitative analysis indicates that the crust-derived helium is dominated by external input, followed by in-situ production, in the Ledong diapir area. The crust- derived helium exhibits an in-situ <sup>4</sup>He yield rate of (7.66– 7.95)×10<sup>−13</sup> cm<sup>3</sup>/(a·g), an in-situ <sup>4</sup>He yield of (4.10–4.25)× 10<sup>−4</sup> cm<sup>3</sup>/g, and an external <sup>4</sup>He influx of (5.84–9.06)×10<sup>−2</sup> cm<sup>3</sup>/g. These results may be related to atmospheric recharge into formation fluid and deep rock-water interactions. The ratio of initial mole volume of <sup>3</sup>He to enthalpy (<em>W</em>) is (0.004–0.018) ×10<sup>−11</sup> cm<sup>3</sup>/J, and the heat contribution from the deep mantle (<em>X</em><sub>M</sub>) accounts for 7.63%–36.18%, indicating that deep hot fluid activities drive the migration of mantle-derived <sup>3</sup>He. The primary helium migration depends on advection, while the secondary migration is controlled by hydrothermal degassing and gas-liquid separation. From deep to shallow layers, the CO<sub>2</sub>/<sup>3</sup>He value rises from 1.34×10<sup>9</sup> to 486×10<sup>9</sup>, indicating large amount of CO<sub>2</sub> has escaped. Under the influence of deep thermal fluid, helium migration and accumulation mechanisms include: deep heat driven diffusion, advection release, vertical hydrothermal degassing, shallow lateral migration, accumulation in traps far from faults, partial pressure balance and sealing capability.</p></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"51 3","pages":"Pages 753-766"},"PeriodicalIF":7.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1876380424605033/pdf?md5=034d7c0aaa0b220d3bc95e08e249321e&pid=1-s2.0-S1876380424605033-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Genetic source, migration and accumulation of helium under deep thermal fluid activities: A case study of Ledong diapir area in Yinggehai Basin, South China Sea\",\"authors\":\"Ziqi FENG ,&nbsp;Fang HAO ,&nbsp;Lin HU ,&nbsp;Gaowei HU ,&nbsp;Yazhen ZHANG ,&nbsp;Yangming LI ,&nbsp;Wei WANG ,&nbsp;Hao LI ,&nbsp;Junjie XIAO ,&nbsp;Jinqiang TIAN\",\"doi\":\"10.1016/S1876-3804(24)60503-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on the geochemical parameters and analytical data, the heat conservation equation, mass balance law, Rayleigh fractionation model and other methods were used to quantify the in-situ yield and external flux of crust-derived helium, and the initial He concentration and thermal driving mechanism of mantle-derived helium, in the Ledong Diapir area, the Yinggehai Basin, in order to understand the genetic source, migration and accumulation mechanisms of helium under deep thermal fluid activities. The average content of mantle-derived He is only 0.001 4%, the <sup>3</sup>He/<sup>4</sup>He value is (0.002–2.190)×10<sup>−6</sup>, and the <em>R</em>/<em>R</em><sub>a</sub> value ranges from 0.01 to 1.52, indicating the contribution of mantle-derived He is 0.09%–19.84%, while the proportion of crust-derived helium can reach over 80%. Quantitative analysis indicates that the crust-derived helium is dominated by external input, followed by in-situ production, in the Ledong diapir area. The crust- derived helium exhibits an in-situ <sup>4</sup>He yield rate of (7.66– 7.95)×10<sup>−13</sup> cm<sup>3</sup>/(a·g), an in-situ <sup>4</sup>He yield of (4.10–4.25)× 10<sup>−4</sup> cm<sup>3</sup>/g, and an external <sup>4</sup>He influx of (5.84–9.06)×10<sup>−2</sup> cm<sup>3</sup>/g. These results may be related to atmospheric recharge into formation fluid and deep rock-water interactions. The ratio of initial mole volume of <sup>3</sup>He to enthalpy (<em>W</em>) is (0.004–0.018) ×10<sup>−11</sup> cm<sup>3</sup>/J, and the heat contribution from the deep mantle (<em>X</em><sub>M</sub>) accounts for 7.63%–36.18%, indicating that deep hot fluid activities drive the migration of mantle-derived <sup>3</sup>He. The primary helium migration depends on advection, while the secondary migration is controlled by hydrothermal degassing and gas-liquid separation. From deep to shallow layers, the CO<sub>2</sub>/<sup>3</sup>He value rises from 1.34×10<sup>9</sup> to 486×10<sup>9</sup>, indicating large amount of CO<sub>2</sub> has escaped. Under the influence of deep thermal fluid, helium migration and accumulation mechanisms include: deep heat driven diffusion, advection release, vertical hydrothermal degassing, shallow lateral migration, accumulation in traps far from faults, partial pressure balance and sealing capability.</p></div>\",\"PeriodicalId\":67426,\"journal\":{\"name\":\"Petroleum Exploration and Development\",\"volume\":\"51 3\",\"pages\":\"Pages 753-766\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1876380424605033/pdf?md5=034d7c0aaa0b220d3bc95e08e249321e&pid=1-s2.0-S1876380424605033-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Exploration and Development\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876380424605033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380424605033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

根据地球化学参数和分析数据,采用热守恒方程、质量平衡定律、瑞利分馏模型等方法,对莺歌海盆乐东断陷区地壳源氦的原位产率和外通量、地幔源氦的初始氦浓度和热驱动机制进行了定量分析,以了解深部热流体活动下氦的成因、迁移和聚集机制。地幔源氦的平均含量仅为0.001 4%,3He/4He值为(0.002-2.190)×10-6,R/Ra值在0.01-1.52之间,表明地幔源氦的贡献率为0.09%-19.84%,而地壳源氦的比例可达80%以上。定量分析表明,在乐东断陷区,地壳衍生氦主要由外部输入,其次是原位产生。地壳衍生氦的原位 4He 产率为 (7.66- 7.95)×10-13 cm3/(a-g),原位 4He 产率为 (4.10-4.25)×10-4 cm3/g,外部 4He 流入量为 (5.84-9.06)×10-2 cm3/g。这些结果可能与大气补给地层流体和深层岩石与水的相互作用有关。3He的初始摩尔体积与焓(W)之比为(0.004-0.018)×10-11 cm3/J,来自深部地幔(XM)的热量贡献占7.63%-36.18%,表明深部热流体活动推动了地幔衍生3He的迁移。一次氦迁移取决于平流,而二次迁移则受热液脱气和气液分离的控制。从深层到浅层,CO2/3He值从1.34×109上升到486×109,表明有大量CO2逸出。在深部热流体的影响下,氦的迁移和富集机制包括:深部热驱动扩散、平流释放、垂直热液脱气、浅层横向迁移、在远离断层的捕集层富集、分压平衡和密封能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic source, migration and accumulation of helium under deep thermal fluid activities: A case study of Ledong diapir area in Yinggehai Basin, South China Sea

Based on the geochemical parameters and analytical data, the heat conservation equation, mass balance law, Rayleigh fractionation model and other methods were used to quantify the in-situ yield and external flux of crust-derived helium, and the initial He concentration and thermal driving mechanism of mantle-derived helium, in the Ledong Diapir area, the Yinggehai Basin, in order to understand the genetic source, migration and accumulation mechanisms of helium under deep thermal fluid activities. The average content of mantle-derived He is only 0.001 4%, the 3He/4He value is (0.002–2.190)×10−6, and the R/Ra value ranges from 0.01 to 1.52, indicating the contribution of mantle-derived He is 0.09%–19.84%, while the proportion of crust-derived helium can reach over 80%. Quantitative analysis indicates that the crust-derived helium is dominated by external input, followed by in-situ production, in the Ledong diapir area. The crust- derived helium exhibits an in-situ 4He yield rate of (7.66– 7.95)×10−13 cm3/(a·g), an in-situ 4He yield of (4.10–4.25)× 10−4 cm3/g, and an external 4He influx of (5.84–9.06)×10−2 cm3/g. These results may be related to atmospheric recharge into formation fluid and deep rock-water interactions. The ratio of initial mole volume of 3He to enthalpy (W) is (0.004–0.018) ×10−11 cm3/J, and the heat contribution from the deep mantle (XM) accounts for 7.63%–36.18%, indicating that deep hot fluid activities drive the migration of mantle-derived 3He. The primary helium migration depends on advection, while the secondary migration is controlled by hydrothermal degassing and gas-liquid separation. From deep to shallow layers, the CO2/3He value rises from 1.34×109 to 486×109, indicating large amount of CO2 has escaped. Under the influence of deep thermal fluid, helium migration and accumulation mechanisms include: deep heat driven diffusion, advection release, vertical hydrothermal degassing, shallow lateral migration, accumulation in traps far from faults, partial pressure balance and sealing capability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
期刊最新文献
Accumulation sequence and exploration domain of continental whole petroleum system in Sichuan Basin, SW China Tectonic evolution and source rocks development of the super oil-rich Bohai Bay Basin, East China Impact of Tethyan domain evolution on the formation of petroleum systems in the Sichuan super basin, SW China Fracture-controlled fracturing mechanism and penetration discrimination criteria for thin sand-mud interbedded reservoirs in Sulige gas field, Ordos Basin, China Helium enrichment theory and exploration ideas for helium-rich gas reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1