{"title":"针对卫星集成智能电网中量子攻击的连续身份验证协议","authors":"Chao Huang, Min Yang, Bo Li, Lin Yu","doi":"10.1111/coin.12647","DOIUrl":null,"url":null,"abstract":"<p>To address the issue of low efficiency caused by the repeated use of quantum attack resistant static identity authentication methods in a satellite integrated smart grid, this paper proposes a quantum attack resistant continuous identity authentication protocol. First, in the initial authentication stage, in order to reduce computational complexity, the key encryption mechanism in the CRYSTALS-Kyber algorithm was improved and combined with the NTRU message recovery digital signature scheme to construct a lattice based explicit AKE (Kyber NTRU. AKE), which achieved mutual authentication and negotiated shared tokens. Second, in the continuous authentication stage, incorporating quantum attack resistant tokens into the current algorithm to improve authentication efficiency. The formal analysis results indicate that compared to the weakly forward secure Kyber.AKE in the CRYSTALS-Kyber algorithm, Kyber-NTRU.AKE achieves complete forward secrecy, while the non-formal analysis results demonstrate the security of the continuous authentication phase. Through theoretical analysis and efficiency comparison with Cyber.AKE, the analysis shows that the Cyber-NTRU.AKE has higher computational and communication efficiency than Cyber.AKE.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous identity authentication protocol against quantum attacks in satellite integrated smart grid\",\"authors\":\"Chao Huang, Min Yang, Bo Li, Lin Yu\",\"doi\":\"10.1111/coin.12647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To address the issue of low efficiency caused by the repeated use of quantum attack resistant static identity authentication methods in a satellite integrated smart grid, this paper proposes a quantum attack resistant continuous identity authentication protocol. First, in the initial authentication stage, in order to reduce computational complexity, the key encryption mechanism in the CRYSTALS-Kyber algorithm was improved and combined with the NTRU message recovery digital signature scheme to construct a lattice based explicit AKE (Kyber NTRU. AKE), which achieved mutual authentication and negotiated shared tokens. Second, in the continuous authentication stage, incorporating quantum attack resistant tokens into the current algorithm to improve authentication efficiency. The formal analysis results indicate that compared to the weakly forward secure Kyber.AKE in the CRYSTALS-Kyber algorithm, Kyber-NTRU.AKE achieves complete forward secrecy, while the non-formal analysis results demonstrate the security of the continuous authentication phase. Through theoretical analysis and efficiency comparison with Cyber.AKE, the analysis shows that the Cyber-NTRU.AKE has higher computational and communication efficiency than Cyber.AKE.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12647\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12647","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Continuous identity authentication protocol against quantum attacks in satellite integrated smart grid
To address the issue of low efficiency caused by the repeated use of quantum attack resistant static identity authentication methods in a satellite integrated smart grid, this paper proposes a quantum attack resistant continuous identity authentication protocol. First, in the initial authentication stage, in order to reduce computational complexity, the key encryption mechanism in the CRYSTALS-Kyber algorithm was improved and combined with the NTRU message recovery digital signature scheme to construct a lattice based explicit AKE (Kyber NTRU. AKE), which achieved mutual authentication and negotiated shared tokens. Second, in the continuous authentication stage, incorporating quantum attack resistant tokens into the current algorithm to improve authentication efficiency. The formal analysis results indicate that compared to the weakly forward secure Kyber.AKE in the CRYSTALS-Kyber algorithm, Kyber-NTRU.AKE achieves complete forward secrecy, while the non-formal analysis results demonstrate the security of the continuous authentication phase. Through theoretical analysis and efficiency comparison with Cyber.AKE, the analysis shows that the Cyber-NTRU.AKE has higher computational and communication efficiency than Cyber.AKE.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.