利用电阻式随机存取存储器桥和电容神经元实现不受器件变化和压降影响的二值化神经网络

Mona Ezzadeen, Atreya Majumdar, Olivier Valorge, Niccolo Castellani, Valentin Gherman, Guillaume Regis, Bastien Giraud, Jean-Philippe Noel, Valentina Meli, Marc Bocquet, Francois Andrieu, Damien Querlioz, Jean-Michel Portal
{"title":"利用电阻式随机存取存储器桥和电容神经元实现不受器件变化和压降影响的二值化神经网络","authors":"Mona Ezzadeen, Atreya Majumdar, Olivier Valorge, Niccolo Castellani, Valentin Gherman, Guillaume Regis, Bastien Giraud, Jean-Philippe Noel, Valentina Meli, Marc Bocquet, Francois Andrieu, Damien Querlioz, Jean-Michel Portal","doi":"10.1038/s44172-024-00226-z","DOIUrl":null,"url":null,"abstract":"Resistive Random Access Memories (ReRAM) arrays provides a promising basement to deploy neural network accelerators based on near or in memory computing. However most popular accelerators rely on Ohm’s and Kirchhoff’s laws to achieve multiply and accumulate, and thus are prone to ReRAM variability and voltage drop in the memory array, and thus need sophisticated readout circuits. Here we propose a robust binary neural network, based on fully differential capacitive neurons and ReRAM synapses, used in a resistive bridge fashion. We fabricated a network layer with up to 23 inputs that we extrapolated to large numbers of inputs through simulation. Defining proper programming and reading conditions, we demonstrate the high resilience of this solution with a minimal accuracy drop, compared to a software baseline, on image classification tasks. Moreover, our solution can achieve a peak energy efficiency, comparable with the state of the art, when projected to a 22 nanometer technology. Mona Ezzadeen and co-authors demonstrate a compute-in memory cell with a low consumed power per operation. In silicon implementation with 23 inputs is successfully used to solve benchmarking tasks of digit recognition.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00226-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Implementation of binarized neural networks immune to device variation and voltage drop employing resistive random access memory bridges and capacitive neurons\",\"authors\":\"Mona Ezzadeen, Atreya Majumdar, Olivier Valorge, Niccolo Castellani, Valentin Gherman, Guillaume Regis, Bastien Giraud, Jean-Philippe Noel, Valentina Meli, Marc Bocquet, Francois Andrieu, Damien Querlioz, Jean-Michel Portal\",\"doi\":\"10.1038/s44172-024-00226-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resistive Random Access Memories (ReRAM) arrays provides a promising basement to deploy neural network accelerators based on near or in memory computing. However most popular accelerators rely on Ohm’s and Kirchhoff’s laws to achieve multiply and accumulate, and thus are prone to ReRAM variability and voltage drop in the memory array, and thus need sophisticated readout circuits. Here we propose a robust binary neural network, based on fully differential capacitive neurons and ReRAM synapses, used in a resistive bridge fashion. We fabricated a network layer with up to 23 inputs that we extrapolated to large numbers of inputs through simulation. Defining proper programming and reading conditions, we demonstrate the high resilience of this solution with a minimal accuracy drop, compared to a software baseline, on image classification tasks. Moreover, our solution can achieve a peak energy efficiency, comparable with the state of the art, when projected to a 22 nanometer technology. Mona Ezzadeen and co-authors demonstrate a compute-in memory cell with a low consumed power per operation. In silicon implementation with 23 inputs is successfully used to solve benchmarking tasks of digit recognition.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00226-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00226-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00226-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电阻式随机存取存储器(ReRAM)阵列为部署基于近内存或内存计算的神经网络加速器提供了一个前景广阔的基础。然而,大多数流行的加速器都依赖于欧姆定律和基尔霍夫定律来实现乘法和累加,因此很容易受到 ReRAM 变异和存储器阵列压降的影响,因此需要复杂的读出电路。在此,我们提出了一种基于全差分电容神经元和 ReRAM 突触的稳健二元神经网络,以电阻桥方式使用。我们制作了一个具有多达 23 个输入的网络层,并通过模拟推断出大量输入。通过定义适当的编程和读取条件,我们证明了该解决方案的高弹性,与软件基线相比,它在图像分类任务中的准确率下降幅度极小。此外,当投射到 22 纳米技术上时,我们的解决方案可以达到峰值能效,与最先进的技术不相上下。Mona Ezzadeen 及其合著者展示了一种每次操作功耗较低的内存计算单元。在硅片中实现了 23 个输入,成功地解决了数字识别的基准任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implementation of binarized neural networks immune to device variation and voltage drop employing resistive random access memory bridges and capacitive neurons
Resistive Random Access Memories (ReRAM) arrays provides a promising basement to deploy neural network accelerators based on near or in memory computing. However most popular accelerators rely on Ohm’s and Kirchhoff’s laws to achieve multiply and accumulate, and thus are prone to ReRAM variability and voltage drop in the memory array, and thus need sophisticated readout circuits. Here we propose a robust binary neural network, based on fully differential capacitive neurons and ReRAM synapses, used in a resistive bridge fashion. We fabricated a network layer with up to 23 inputs that we extrapolated to large numbers of inputs through simulation. Defining proper programming and reading conditions, we demonstrate the high resilience of this solution with a minimal accuracy drop, compared to a software baseline, on image classification tasks. Moreover, our solution can achieve a peak energy efficiency, comparable with the state of the art, when projected to a 22 nanometer technology. Mona Ezzadeen and co-authors demonstrate a compute-in memory cell with a low consumed power per operation. In silicon implementation with 23 inputs is successfully used to solve benchmarking tasks of digit recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion Ultra-lightweight rechargeable battery with enhanced gravimetric energy densities >750 Wh kg−1 in lithium–sulfur pouch cell An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1