{"title":"使用含有半嵌入式液态金属颗粒的纳米纤维膜的压印可拉伸电子器件","authors":"Sijie Zheng, Xiaowei Wang, Weizheng Li, Ziyang Liu, Qingning Li, Feng Yan","doi":"10.1038/s41928-024-01194-0","DOIUrl":null,"url":null,"abstract":"Stretchable electronic devices are of use in the development of bioelectronics, wearable devices and healthcare monitoring. Liquid-metal-based stretchable devices are of particular interest for such systems but typically require complex manufacturing processes and suffer from poor interfacial adhesion between the liquid metal and polymeric substrates. Here we show that a membrane of electrospun polymer fibres containing semi-embedded liquid metal particles can be used to make stretchable electronics. The liquid metal particles within the fibre network rupture under pressure and fill the gaps in the fibre mesh to form conductive regions. This enables the creation of circuits with high resolution (minimum linewidths of 50 µm) and stability (over 30,000 cycles of 100% strain) using circuit-patterned stamps. The circuits can be integrated with various electronic components to achieve different functions, including square wave signal output, light emission and wireless charging. We used this approach to create sensors for bioelectrical signal monitoring, thus illustrating the biocompatibility and permeability of the membranes. We also show that the liquid-metal-containing fibre membranes can be separated into their individual components and recycled. A membrane of polymer fibres containing semi-embedded liquid metal particles can be selectively ruptured with a patterned stamp to produce stretchable circuits with high resolution and interfacial adhesion between the liquid metal and the polymer.","PeriodicalId":19064,"journal":{"name":"Nature Electronics","volume":null,"pages":null},"PeriodicalIF":33.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal particles\",\"authors\":\"Sijie Zheng, Xiaowei Wang, Weizheng Li, Ziyang Liu, Qingning Li, Feng Yan\",\"doi\":\"10.1038/s41928-024-01194-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stretchable electronic devices are of use in the development of bioelectronics, wearable devices and healthcare monitoring. Liquid-metal-based stretchable devices are of particular interest for such systems but typically require complex manufacturing processes and suffer from poor interfacial adhesion between the liquid metal and polymeric substrates. Here we show that a membrane of electrospun polymer fibres containing semi-embedded liquid metal particles can be used to make stretchable electronics. The liquid metal particles within the fibre network rupture under pressure and fill the gaps in the fibre mesh to form conductive regions. This enables the creation of circuits with high resolution (minimum linewidths of 50 µm) and stability (over 30,000 cycles of 100% strain) using circuit-patterned stamps. The circuits can be integrated with various electronic components to achieve different functions, including square wave signal output, light emission and wireless charging. We used this approach to create sensors for bioelectrical signal monitoring, thus illustrating the biocompatibility and permeability of the membranes. We also show that the liquid-metal-containing fibre membranes can be separated into their individual components and recycled. A membrane of polymer fibres containing semi-embedded liquid metal particles can be selectively ruptured with a patterned stamp to produce stretchable circuits with high resolution and interfacial adhesion between the liquid metal and the polymer.\",\"PeriodicalId\":19064,\"journal\":{\"name\":\"Nature Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":33.7000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41928-024-01194-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41928-024-01194-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Pressure-stamped stretchable electronics using a nanofibre membrane containing semi-embedded liquid metal particles
Stretchable electronic devices are of use in the development of bioelectronics, wearable devices and healthcare monitoring. Liquid-metal-based stretchable devices are of particular interest for such systems but typically require complex manufacturing processes and suffer from poor interfacial adhesion between the liquid metal and polymeric substrates. Here we show that a membrane of electrospun polymer fibres containing semi-embedded liquid metal particles can be used to make stretchable electronics. The liquid metal particles within the fibre network rupture under pressure and fill the gaps in the fibre mesh to form conductive regions. This enables the creation of circuits with high resolution (minimum linewidths of 50 µm) and stability (over 30,000 cycles of 100% strain) using circuit-patterned stamps. The circuits can be integrated with various electronic components to achieve different functions, including square wave signal output, light emission and wireless charging. We used this approach to create sensors for bioelectrical signal monitoring, thus illustrating the biocompatibility and permeability of the membranes. We also show that the liquid-metal-containing fibre membranes can be separated into their individual components and recycled. A membrane of polymer fibres containing semi-embedded liquid metal particles can be selectively ruptured with a patterned stamp to produce stretchable circuits with high resolution and interfacial adhesion between the liquid metal and the polymer.
期刊介绍:
Nature Electronics is a comprehensive journal that publishes both fundamental and applied research in the field of electronics. It encompasses a wide range of topics, including the study of new phenomena and devices, the design and construction of electronic circuits, and the practical applications of electronics. In addition, the journal explores the commercial and industrial aspects of electronics research.
The primary focus of Nature Electronics is on the development of technology and its potential impact on society. The journal incorporates the contributions of scientists, engineers, and industry professionals, offering a platform for their research findings. Moreover, Nature Electronics provides insightful commentary, thorough reviews, and analysis of the key issues that shape the field, as well as the technologies that are reshaping society.
Like all journals within the prestigious Nature brand, Nature Electronics upholds the highest standards of quality. It maintains a dedicated team of professional editors and follows a fair and rigorous peer-review process. The journal also ensures impeccable copy-editing and production, enabling swift publication. Additionally, Nature Electronics prides itself on its editorial independence, ensuring unbiased and impartial reporting.
In summary, Nature Electronics is a leading journal that publishes cutting-edge research in electronics. With its multidisciplinary approach and commitment to excellence, the journal serves as a valuable resource for scientists, engineers, and industry professionals seeking to stay at the forefront of advancements in the field.