可充电 Zn-X(X=S、Se、Te、I2、Br2)电池的最新进展。

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-06-20 DOI:10.1002/cssc.202400886
Wenyan Du, Ziyang Song, Xunwen Zheng, Yaokang Lv, Ling Miao, Lihua Gan, Mingxian Liu
{"title":"可充电 Zn-X(X=S、Se、Te、I2、Br2)电池的最新进展。","authors":"Wenyan Du, Ziyang Song, Xunwen Zheng, Yaokang Lv, Ling Miao, Lihua Gan, Mingxian Liu","doi":"10.1002/cssc.202400886","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, aqueous Zn-X (X=S, Se, Te, I<sub>2</sub>, Br<sub>2</sub>) batteries (ZXBs) have attracted extensive attention in large-scale energy storage techniques due to their ultrahigh theoretical capacity and environmental friendliness. To date, despite tremendous research efforts, achieving high energy density in ZXBs remains challenging and requires a synergy of multiple factors including cathode materials, reaction mechanisms, electrodes and electrolytes. In this review, we comprehensively summarize the various reaction conversion mechanism of zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I<sub>2</sub>) batteries, and zinc-bromine (Zn-Br<sub>2</sub>) batteries, along with recent important progress in the design and electrolyte of advanced cathode (S, Se, Te, I<sub>2</sub>, Br<sub>2</sub>) materials. Additionally, we investigate the fundamental questions of ZXBs and highlight the correlation between electrolyte design and battery performance. This review will stimulate an in-deep understanding of ZXBs and guide the design of conversion batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Progress on Rechargeable Zn-X (X=S, Se, Te, I<sub>2</sub>, Br<sub>2</sub>) Batteries.\",\"authors\":\"Wenyan Du, Ziyang Song, Xunwen Zheng, Yaokang Lv, Ling Miao, Lihua Gan, Mingxian Liu\",\"doi\":\"10.1002/cssc.202400886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recently, aqueous Zn-X (X=S, Se, Te, I<sub>2</sub>, Br<sub>2</sub>) batteries (ZXBs) have attracted extensive attention in large-scale energy storage techniques due to their ultrahigh theoretical capacity and environmental friendliness. To date, despite tremendous research efforts, achieving high energy density in ZXBs remains challenging and requires a synergy of multiple factors including cathode materials, reaction mechanisms, electrodes and electrolytes. In this review, we comprehensively summarize the various reaction conversion mechanism of zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I<sub>2</sub>) batteries, and zinc-bromine (Zn-Br<sub>2</sub>) batteries, along with recent important progress in the design and electrolyte of advanced cathode (S, Se, Te, I<sub>2</sub>, Br<sub>2</sub>) materials. Additionally, we investigate the fundamental questions of ZXBs and highlight the correlation between electrolyte design and battery performance. This review will stimulate an in-deep understanding of ZXBs and guide the design of conversion batteries.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202400886\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202400886","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近,Zn-X(X=S、Se、Te、I2、Br2)水性电池(ZXBs)因其超高的理论容量和环境友好性,在大规模储能技术中引起了广泛关注。迄今为止,尽管开展了大量的研究工作,但在 ZXBs 中实现高能量密度仍然具有挑战性,需要阴极材料、反应机制、电极和电解质等多种因素的协同作用。在这篇综述中,我们全面总结了锌-硫(Zn-S)电池、锌-硒(Zn-Se)电池、锌-碲(Zn-Te)电池、锌-碘(Zn-I2)电池和锌-溴(Zn-Br2)电池的各种反应转化机理,以及最近在先进阴极(S、Se、Te、I2、Br2)材料的设计和电解质方面取得的重要进展。此外,我们还研究了 ZXB 的基本问题,并强调了电解质设计与电池性能之间的相关性。这篇综述将促进对 ZXB 的深入了解,并为转换电池的设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Progress on Rechargeable Zn-X (X=S, Se, Te, I2, Br2) Batteries.

Recently, aqueous Zn-X (X=S, Se, Te, I2, Br2) batteries (ZXBs) have attracted extensive attention in large-scale energy storage techniques due to their ultrahigh theoretical capacity and environmental friendliness. To date, despite tremendous research efforts, achieving high energy density in ZXBs remains challenging and requires a synergy of multiple factors including cathode materials, reaction mechanisms, electrodes and electrolytes. In this review, we comprehensively summarize the various reaction conversion mechanism of zinc-sulfur (Zn-S) batteries, zinc-selenium (Zn-Se) batteries, zinc-tellurium (Zn-Te) batteries, zinc-iodine (Zn-I2) batteries, and zinc-bromine (Zn-Br2) batteries, along with recent important progress in the design and electrolyte of advanced cathode (S, Se, Te, I2, Br2) materials. Additionally, we investigate the fundamental questions of ZXBs and highlight the correlation between electrolyte design and battery performance. This review will stimulate an in-deep understanding of ZXBs and guide the design of conversion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Ionomer and Membrane Designs for Low-Temperature CO2 and CO Electrolysis. Deciphering electrocatalytic hydrogen production in water through a bioinspired water-stable copper(II) complex adorned with (N2S2)-donor sites. Mechanistic Study of the Electrochemical Reduction of CO2 in Aprotic Ionic Liquid in Air. More Efficient Chemical Recycling of Poly(ethylene terephthalate) by Intercepting Intermediates. Active Sites for CO2 Hydrogenation to Methanol: Mechanistic Insights and Reaction Control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1