SAnDReS 2.0:开发机器学习模型,探索评分函数空间。

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2024-06-20 DOI:10.1002/jcc.27449
Walter Filgueira de Azevedo Jr, Rodrigo Quiroga, Marcos Ariel Villarreal, Nelson José Freitas da Silveira, Gabriela Bitencourt-Ferreira, Amauri Duarte da Silva, Martina Veit-Acosta, Patricia Rufino Oliveira, Marco Tutone, Nadezhda Biziukova, Vladimir Poroikov, Olga Tarasova, Stéphaine Baud
{"title":"SAnDReS 2.0:开发机器学习模型,探索评分函数空间。","authors":"Walter Filgueira de Azevedo Jr,&nbsp;Rodrigo Quiroga,&nbsp;Marcos Ariel Villarreal,&nbsp;Nelson José Freitas da Silveira,&nbsp;Gabriela Bitencourt-Ferreira,&nbsp;Amauri Duarte da Silva,&nbsp;Martina Veit-Acosta,&nbsp;Patricia Rufino Oliveira,&nbsp;Marco Tutone,&nbsp;Nadezhda Biziukova,&nbsp;Vladimir Poroikov,&nbsp;Olga Tarasova,&nbsp;Stéphaine Baud","doi":"10.1002/jcc.27449","DOIUrl":null,"url":null,"abstract":"<p>Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein–ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein–ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as <i>K</i><sub>DEEP</sub>, CSM-lig, and Δ<sub>Vina</sub>RF<sub>20</sub>. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 27","pages":"2333-2346"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAnDReS 2.0: Development of machine-learning models to explore the scoring function space\",\"authors\":\"Walter Filgueira de Azevedo Jr,&nbsp;Rodrigo Quiroga,&nbsp;Marcos Ariel Villarreal,&nbsp;Nelson José Freitas da Silveira,&nbsp;Gabriela Bitencourt-Ferreira,&nbsp;Amauri Duarte da Silva,&nbsp;Martina Veit-Acosta,&nbsp;Patricia Rufino Oliveira,&nbsp;Marco Tutone,&nbsp;Nadezhda Biziukova,&nbsp;Vladimir Poroikov,&nbsp;Olga Tarasova,&nbsp;Stéphaine Baud\",\"doi\":\"10.1002/jcc.27449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein–ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein–ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as <i>K</i><sub>DEEP</sub>, CSM-lig, and Δ<sub>Vina</sub>RF<sub>20</sub>. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"45 27\",\"pages\":\"2333-2346\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27449\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27449","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

经典的评分函数在确定配体与蛋白质的结合亲和力方面可能表现出较低的准确性。有了蛋白质配体结构和亲和力数据,就有可能针对特定蛋白质系统开发出具有卓越预测性能的机器学习模型。在这里,我们报告了一种名为 SAnDReS 的新方法,它将 AutoDock Vina 1.2 与 Scikit-Learn 中的 54 种回归方法相结合,根据蛋白质配体结构计算结合亲和力。这种方法允许探索评分函数空间。SAnDReS 可根据晶体、对接和 AlphaFold 生成的结构生成机器学习模型。作为概念验证,我们在三个案例研究中检验了 SAnDReS 生成模型的性能。在所有三个案例中,我们的模型都优于经典的评分函数。此外,SAnDReS 生成模型的预测性能接近或优于其他机器学习模型,如 KDEEP、CSM-lig 和 ΔVinaRF20。SAnDReS 2.0 可在 https://github.com/azevedolab/sandres 上下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space

Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein–ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein–ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as KDEEP, CSM-lig, and ΔVinaRF20. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Issue Information DC24: A new density coherence functional for multiconfiguration density‐coherence functional theory Excited state relaxation mechanisms of paracetamol and acetanilide. Stable, aromatic, and electrophilic azepinium ions: Design using quantum chemical methods Assessing small molecule conformational sampling methods in molecular docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1