Lixu Pan, Bo Yuan, Qingqing Li, Ji Ouyang, Jie Yang, Yan Zhou, Changzheng Cui
{"title":"Pandoraea sp. XJJ-1 通过单氧途径对氯苯进行高效生物降解,极具地下水生物修复潜力。","authors":"Lixu Pan, Bo Yuan, Qingqing Li, Ji Ouyang, Jie Yang, Yan Zhou, Changzheng Cui","doi":"10.1007/s10123-024-00544-4","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorobenzene (CB), extensively used in industrial processes, has emerged as a significant contaminant in soil and groundwater. The eco-friendly and cost-effective microbial remediation has been increasingly favored to address this environmental challenge. In this study, a degrading bacterium was isolated from CB-contaminated soil at a pesticide plant, identified as Pandoraea sp. XJJ-1 (CCTCC M 2021057). This strain completely degraded 100 mg·L<sup>-1</sup> CB and showed extensive degradability across a range of pH (5.0-9.0), temperature (10-37 °C), and CB concentrations (100-600 mg·L<sup>-1</sup>). Notably, the degradation efficiency was 85.2% at 15 °C, and the strain could also degrade six other aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene (o-, m-, p-). The metabolic pathway of CB was inferred using ultraperformance liquid chromatography, gas chromatography-mass spectrometry, and genomic analysis. In strain XJJ-1, CB was metabolized to o-chlorophenol and 3-chloroxychol by CB monooxygenase, followed by ortho-cleavage by the action of 3-chlorocatechol 1,2-dioxygenase. Moreover, the presence of the chlorobenzene monooxygenation pathway metabolism in strain XJJ-1 is reported for the first time in Pandoraea. As a bacterium with low-temperature resistance and composite pollutant degradation capacity, strain XJJ-1 has the potential application prospects in the in-situ bioremediation of CB-contaminated sites.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient biodegradation of chlorobenzene via monooxygenation pathways by Pandoraea sp. XJJ-1 with high potential for groundwater bioremediation.\",\"authors\":\"Lixu Pan, Bo Yuan, Qingqing Li, Ji Ouyang, Jie Yang, Yan Zhou, Changzheng Cui\",\"doi\":\"10.1007/s10123-024-00544-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chlorobenzene (CB), extensively used in industrial processes, has emerged as a significant contaminant in soil and groundwater. The eco-friendly and cost-effective microbial remediation has been increasingly favored to address this environmental challenge. In this study, a degrading bacterium was isolated from CB-contaminated soil at a pesticide plant, identified as Pandoraea sp. XJJ-1 (CCTCC M 2021057). This strain completely degraded 100 mg·L<sup>-1</sup> CB and showed extensive degradability across a range of pH (5.0-9.0), temperature (10-37 °C), and CB concentrations (100-600 mg·L<sup>-1</sup>). Notably, the degradation efficiency was 85.2% at 15 °C, and the strain could also degrade six other aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene (o-, m-, p-). The metabolic pathway of CB was inferred using ultraperformance liquid chromatography, gas chromatography-mass spectrometry, and genomic analysis. In strain XJJ-1, CB was metabolized to o-chlorophenol and 3-chloroxychol by CB monooxygenase, followed by ortho-cleavage by the action of 3-chlorocatechol 1,2-dioxygenase. Moreover, the presence of the chlorobenzene monooxygenation pathway metabolism in strain XJJ-1 is reported for the first time in Pandoraea. As a bacterium with low-temperature resistance and composite pollutant degradation capacity, strain XJJ-1 has the potential application prospects in the in-situ bioremediation of CB-contaminated sites.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-024-00544-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00544-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Efficient biodegradation of chlorobenzene via monooxygenation pathways by Pandoraea sp. XJJ-1 with high potential for groundwater bioremediation.
Chlorobenzene (CB), extensively used in industrial processes, has emerged as a significant contaminant in soil and groundwater. The eco-friendly and cost-effective microbial remediation has been increasingly favored to address this environmental challenge. In this study, a degrading bacterium was isolated from CB-contaminated soil at a pesticide plant, identified as Pandoraea sp. XJJ-1 (CCTCC M 2021057). This strain completely degraded 100 mg·L-1 CB and showed extensive degradability across a range of pH (5.0-9.0), temperature (10-37 °C), and CB concentrations (100-600 mg·L-1). Notably, the degradation efficiency was 85.2% at 15 °C, and the strain could also degrade six other aromatic hydrocarbons, including benzene, toluene, ethylbenzene, and xylene (o-, m-, p-). The metabolic pathway of CB was inferred using ultraperformance liquid chromatography, gas chromatography-mass spectrometry, and genomic analysis. In strain XJJ-1, CB was metabolized to o-chlorophenol and 3-chloroxychol by CB monooxygenase, followed by ortho-cleavage by the action of 3-chlorocatechol 1,2-dioxygenase. Moreover, the presence of the chlorobenzene monooxygenation pathway metabolism in strain XJJ-1 is reported for the first time in Pandoraea. As a bacterium with low-temperature resistance and composite pollutant degradation capacity, strain XJJ-1 has the potential application prospects in the in-situ bioremediation of CB-contaminated sites.