光辉的一生--纪念大卫-莫泽拉尔 95 岁生日。

IF 2.9 3区 生物学 Q2 PLANT SCIENCES Photosynthesis Research Pub Date : 2024-09-01 Epub Date: 2024-06-20 DOI:10.1007/s11120-024-01105-6
Jonathan S Lindsey
{"title":"光辉的一生--纪念大卫-莫泽拉尔 95 岁生日。","authors":"Jonathan S Lindsey","doi":"10.1007/s11120-024-01105-6","DOIUrl":null,"url":null,"abstract":"<p><p>David Mauzerall was born on July 22, 1929 to a working-class family in the small, inland textile town of Sanford, Maine. Those humble origins instilled a lifelong frugality and an innovative spirit. After earning his PhD degree in 1954 in physical organic chemistry with Frank Westheimer at the University of Chicago, he joined The Rockefeller Institute for Medical Research (now University) as a postdoctoral fellow that summer, rose to the rank of professor, and remained there for the rest of his career. His work over more than 60 years encompassed porphyrin biosynthesis, photoinduced electron-transfer reactions in diverse architectures (solutions, bilayer lipid membranes, reaction centers, chromatophores, and intact leaves), the light-saturation curve of photosynthesis, statistical treatments of photoreactions, and \"all-things porphyrins.\" His research culminated in studies he poetically referred to as \"listening to leaves\" through the use of pulsed photoacoustic spectroscopy to probe the course and thermodynamics of photosynthesis in its native state. His research group was always small; indeed, of 185 total publications, 39 were singly authored. In brief, David Mauzerall has blended a deep knowledge of distinct disciplines of physical organic chemistry, photochemistry, spectroscopy and biophysics with ingenious experimental methods, incisive mathematical analysis, pristine personal integrity, and unyielding love of science to deepen our understanding of photosynthesis in its broadest context. He thought creatively - and always independently. His work helped systematize the fields of photosynthesis and the origin of life and made them more quantitative. The present article highlights a number of salient scientific discoveries and includes comments from members of his family, friends, and collaborators (Gary Brudvig, Greg Edens, Paul Falkowski, Alzatta Fogg, G. Govindjee, Nancy Greenbaum, Marilyn Gunner, Harvey Hou, Denise and Michele Mauzerall, Thomas Moore, and William Parson) as part of a celebration of his 95th birthday.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A life in light - in honor of David Mauzerall on his 95th birthday.\",\"authors\":\"Jonathan S Lindsey\",\"doi\":\"10.1007/s11120-024-01105-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>David Mauzerall was born on July 22, 1929 to a working-class family in the small, inland textile town of Sanford, Maine. Those humble origins instilled a lifelong frugality and an innovative spirit. After earning his PhD degree in 1954 in physical organic chemistry with Frank Westheimer at the University of Chicago, he joined The Rockefeller Institute for Medical Research (now University) as a postdoctoral fellow that summer, rose to the rank of professor, and remained there for the rest of his career. His work over more than 60 years encompassed porphyrin biosynthesis, photoinduced electron-transfer reactions in diverse architectures (solutions, bilayer lipid membranes, reaction centers, chromatophores, and intact leaves), the light-saturation curve of photosynthesis, statistical treatments of photoreactions, and \\\"all-things porphyrins.\\\" His research culminated in studies he poetically referred to as \\\"listening to leaves\\\" through the use of pulsed photoacoustic spectroscopy to probe the course and thermodynamics of photosynthesis in its native state. His research group was always small; indeed, of 185 total publications, 39 were singly authored. In brief, David Mauzerall has blended a deep knowledge of distinct disciplines of physical organic chemistry, photochemistry, spectroscopy and biophysics with ingenious experimental methods, incisive mathematical analysis, pristine personal integrity, and unyielding love of science to deepen our understanding of photosynthesis in its broadest context. He thought creatively - and always independently. His work helped systematize the fields of photosynthesis and the origin of life and made them more quantitative. The present article highlights a number of salient scientific discoveries and includes comments from members of his family, friends, and collaborators (Gary Brudvig, Greg Edens, Paul Falkowski, Alzatta Fogg, G. Govindjee, Nancy Greenbaum, Marilyn Gunner, Harvey Hou, Denise and Michele Mauzerall, Thomas Moore, and William Parson) as part of a celebration of his 95th birthday.</p>\",\"PeriodicalId\":20130,\"journal\":{\"name\":\"Photosynthesis Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthesis Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11120-024-01105-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-024-01105-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

1929 年 7 月 22 日,戴维-莫泽尔出生在缅因州桑福德一个内陆纺织小镇的工人家庭。卑微的出身培养了他一生的节俭和创新精神。1954 年,他在芝加哥大学师从弗兰克-韦斯特海默(Frank Westheimer)获得物理有机化学博士学位,同年夏天进入洛克菲勒医学研究所(现为芝加哥大学)担任博士后研究员,随后晋升为教授,并在那里度过了他的职业生涯。60 多年来,他的研究工作涵盖了卟啉的生物合成、不同结构(溶液、双层脂膜、反应中心、色素体和完整叶片)中的光诱导电子转移反应、光合作用的光饱和曲线、光反应的统计处理以及 "卟啉的一切"。他通过使用脉冲光声光谱学来探究原生状态下光合作用的过程和热力学,他诗意地称之为 "聆听叶子 "的研究将他的研究推向了高潮。他的研究小组规模一直很小;事实上,在他发表的 185 篇论文中,有 39 篇是个人撰写的。简而言之,戴维-莫泽拉尔将物理有机化学、光化学、光谱学和生物物理学等不同学科的深厚知识与巧妙的实验方法、精辟的数学分析、纯正的个人品格和对科学不屈不挠的热爱融为一体,加深了我们对光合作用最广泛的了解。他创造性地思考问题,而且总是独立思考。他的研究工作有助于将光合作用和生命起源领域系统化,并使其更加定量化。本文重点介绍了他的一些突出的科学发现,并收录了他的家人、朋友和合作者(加里-布鲁德维格、格雷格-伊登斯、保罗-福尔科夫斯基、阿尔扎塔-福格、戈文吉、南希-格林鲍姆、玛丽莲-冈纳、哈维-侯、丹尼斯和米歇尔-莫泽拉尔、托马斯-摩尔和威廉-帕森)的评论,作为庆祝他 95 岁生日的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A life in light - in honor of David Mauzerall on his 95th birthday.

David Mauzerall was born on July 22, 1929 to a working-class family in the small, inland textile town of Sanford, Maine. Those humble origins instilled a lifelong frugality and an innovative spirit. After earning his PhD degree in 1954 in physical organic chemistry with Frank Westheimer at the University of Chicago, he joined The Rockefeller Institute for Medical Research (now University) as a postdoctoral fellow that summer, rose to the rank of professor, and remained there for the rest of his career. His work over more than 60 years encompassed porphyrin biosynthesis, photoinduced electron-transfer reactions in diverse architectures (solutions, bilayer lipid membranes, reaction centers, chromatophores, and intact leaves), the light-saturation curve of photosynthesis, statistical treatments of photoreactions, and "all-things porphyrins." His research culminated in studies he poetically referred to as "listening to leaves" through the use of pulsed photoacoustic spectroscopy to probe the course and thermodynamics of photosynthesis in its native state. His research group was always small; indeed, of 185 total publications, 39 were singly authored. In brief, David Mauzerall has blended a deep knowledge of distinct disciplines of physical organic chemistry, photochemistry, spectroscopy and biophysics with ingenious experimental methods, incisive mathematical analysis, pristine personal integrity, and unyielding love of science to deepen our understanding of photosynthesis in its broadest context. He thought creatively - and always independently. His work helped systematize the fields of photosynthesis and the origin of life and made them more quantitative. The present article highlights a number of salient scientific discoveries and includes comments from members of his family, friends, and collaborators (Gary Brudvig, Greg Edens, Paul Falkowski, Alzatta Fogg, G. Govindjee, Nancy Greenbaum, Marilyn Gunner, Harvey Hou, Denise and Michele Mauzerall, Thomas Moore, and William Parson) as part of a celebration of his 95th birthday.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthesis Research
Photosynthesis Research 生物-植物科学
CiteScore
6.90
自引率
8.10%
发文量
91
审稿时长
4.5 months
期刊介绍: Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.
期刊最新文献
Tribute to Kenneth Sauer (1931-2022): a mentor, a role-model, and an inspiration to all in the field of photosynthesis. Editorial for the Special Issue 'Energy Conversion Reactions in Natural and Artificial Photosynthesis': A Tribute to Ken Sauer. Bicarbonate is a key regulator but not a substrate for O2 evolution in Photosystem II. Mg2+ limitation leads to a decrease in chlorophyll, resulting in an unbalanced photosynthetic apparatus in the cyanobacterium Synechocytis sp. PCC6803. Effects of drought and moisture stress on the growth and ecophysiological traits of Schima superba seedlings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1