Jianhua Li , Taorui Wu , Jialong Wang , Youlong Chen , Wenxin Zhang , Lijun Cai , Shufang Lai , Kaihui Hu , Wensong Jin
{"title":"在酿酒酵母中进行高效基因组编辑的双辅助营养耦合红色标记策略。","authors":"Jianhua Li , Taorui Wu , Jialong Wang , Youlong Chen , Wenxin Zhang , Lijun Cai , Shufang Lai , Kaihui Hu , Wensong Jin","doi":"10.1016/j.fgb.2024.103910","DOIUrl":null,"url":null,"abstract":"<div><p>The homologous recombination strategy has a long history of editing <em>Saccharomyces cerevisiae</em> target genes. The application of CRISPR/Cas9 strategy to editing target genes in <em>S. cerevisiae</em> has also received a lot of attention in recent years. All findings seem to indicate that editing relevant target genes in <em>S. cerevisiae</em> is an extremely easy event. In this study, we systematically analyzed the advantages and disadvantages of homologous recombination (HR) strategy, CRISPR/Cas9 strategy, and CRISPR/Cas9 combined homology-mediated repair (CRISPR/Case9-HDR) strategy in knocking out BY4742 <em>ade2</em>. Our data showed that when the <em>ade2</em> was knocked out by HR strategy, a large number of clones appeared to be off-target, and 10 %–80 % of the so-called knockout clones obtained were heteroclones. When the CRISPR/Cas9 strategy was applied, 60% of clones were off-target and the rest were all heteroclones. Interestingly, most of the cells were edited successfully, but at least 60 % of the clones were heteroclones, when the CRISPR/Cas9-HDR strategy was employed. Our results clearly showed that the emergence of heteroclone seems inevitable regardless of the strategies used for editing BY4742 <em>ade2</em>. Given the characteristics of BY4742 defective in <em>ade2</em> showing red on the YPD plate, we attempted to build an efficient yeast gene editing strategy, in which the CRISPR/Cas9 combines homology-mediated repair template carrying an <em>ade2</em> expression cassette, BY4742(<em>ade2Δ0</em>) as the start strain. We used this strategy to successfully achieve 100 % knockout efficiency of <em>trp1</em>, indicating that technical challenges of how to easily screen out pure knockout clones without color phenotype have been solved. Our data showed in this study not only establishes an efficient yeast gene knockout strategy with dual auxotrophy coupled red labeling but also provides new ideas and references for the knockout of target genes in the monokaryotic mycelium of macrofungi.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"173 ","pages":"Article 103910"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual auxotrophy coupled red labeling strategy for efficient genome editing in Saccharomyces cerevisiae\",\"authors\":\"Jianhua Li , Taorui Wu , Jialong Wang , Youlong Chen , Wenxin Zhang , Lijun Cai , Shufang Lai , Kaihui Hu , Wensong Jin\",\"doi\":\"10.1016/j.fgb.2024.103910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The homologous recombination strategy has a long history of editing <em>Saccharomyces cerevisiae</em> target genes. The application of CRISPR/Cas9 strategy to editing target genes in <em>S. cerevisiae</em> has also received a lot of attention in recent years. All findings seem to indicate that editing relevant target genes in <em>S. cerevisiae</em> is an extremely easy event. In this study, we systematically analyzed the advantages and disadvantages of homologous recombination (HR) strategy, CRISPR/Cas9 strategy, and CRISPR/Cas9 combined homology-mediated repair (CRISPR/Case9-HDR) strategy in knocking out BY4742 <em>ade2</em>. Our data showed that when the <em>ade2</em> was knocked out by HR strategy, a large number of clones appeared to be off-target, and 10 %–80 % of the so-called knockout clones obtained were heteroclones. When the CRISPR/Cas9 strategy was applied, 60% of clones were off-target and the rest were all heteroclones. Interestingly, most of the cells were edited successfully, but at least 60 % of the clones were heteroclones, when the CRISPR/Cas9-HDR strategy was employed. Our results clearly showed that the emergence of heteroclone seems inevitable regardless of the strategies used for editing BY4742 <em>ade2</em>. Given the characteristics of BY4742 defective in <em>ade2</em> showing red on the YPD plate, we attempted to build an efficient yeast gene editing strategy, in which the CRISPR/Cas9 combines homology-mediated repair template carrying an <em>ade2</em> expression cassette, BY4742(<em>ade2Δ0</em>) as the start strain. We used this strategy to successfully achieve 100 % knockout efficiency of <em>trp1</em>, indicating that technical challenges of how to easily screen out pure knockout clones without color phenotype have been solved. Our data showed in this study not only establishes an efficient yeast gene knockout strategy with dual auxotrophy coupled red labeling but also provides new ideas and references for the knockout of target genes in the monokaryotic mycelium of macrofungi.</p></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\"173 \",\"pages\":\"Article 103910\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184524000471\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184524000471","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Dual auxotrophy coupled red labeling strategy for efficient genome editing in Saccharomyces cerevisiae
The homologous recombination strategy has a long history of editing Saccharomyces cerevisiae target genes. The application of CRISPR/Cas9 strategy to editing target genes in S. cerevisiae has also received a lot of attention in recent years. All findings seem to indicate that editing relevant target genes in S. cerevisiae is an extremely easy event. In this study, we systematically analyzed the advantages and disadvantages of homologous recombination (HR) strategy, CRISPR/Cas9 strategy, and CRISPR/Cas9 combined homology-mediated repair (CRISPR/Case9-HDR) strategy in knocking out BY4742 ade2. Our data showed that when the ade2 was knocked out by HR strategy, a large number of clones appeared to be off-target, and 10 %–80 % of the so-called knockout clones obtained were heteroclones. When the CRISPR/Cas9 strategy was applied, 60% of clones were off-target and the rest were all heteroclones. Interestingly, most of the cells were edited successfully, but at least 60 % of the clones were heteroclones, when the CRISPR/Cas9-HDR strategy was employed. Our results clearly showed that the emergence of heteroclone seems inevitable regardless of the strategies used for editing BY4742 ade2. Given the characteristics of BY4742 defective in ade2 showing red on the YPD plate, we attempted to build an efficient yeast gene editing strategy, in which the CRISPR/Cas9 combines homology-mediated repair template carrying an ade2 expression cassette, BY4742(ade2Δ0) as the start strain. We used this strategy to successfully achieve 100 % knockout efficiency of trp1, indicating that technical challenges of how to easily screen out pure knockout clones without color phenotype have been solved. Our data showed in this study not only establishes an efficient yeast gene knockout strategy with dual auxotrophy coupled red labeling but also provides new ideas and references for the knockout of target genes in the monokaryotic mycelium of macrofungi.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.