乙酰丁酸梭菌发酵产物含水生物燃料的燃料特性及应用前景

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING Biomass & Bioenergy Pub Date : 2024-06-19 DOI:10.1016/j.biombioe.2024.107263
Zhenlong Geng , Yangyi Wu , Hongyuan Wei , Yang Zhao , Teng Xu , Chao Jin , Haifeng Liu
{"title":"乙酰丁酸梭菌发酵产物含水生物燃料的燃料特性及应用前景","authors":"Zhenlong Geng ,&nbsp;Yangyi Wu ,&nbsp;Hongyuan Wei ,&nbsp;Yang Zhao ,&nbsp;Teng Xu ,&nbsp;Chao Jin ,&nbsp;Haifeng Liu","doi":"10.1016/j.biombioe.2024.107263","DOIUrl":null,"url":null,"abstract":"<div><p>Biobutanol, a promising green alternative fuel, fermented from <em>Clostridium acetobutylicum</em>, while its high-cost and limited yield constraining its development. ABE (acetone-butanol-ethanol) and IBE (isopropanol-butanol-ethanol) are mixed fermentation products from non-edible biomass raw materials, using them together with water as alternative fuels will reduce industrial production costs and save fossil fuels. Therefore, this study conducted a multifaceted experimental evaluation on ABE/IBE mixed fuels with different water content, demonstrating that it has good water holding capacity when mixed with traditional fossil fuels. Taking ABE (3: 6: 1) as an example, its water holding capacity after mixing with diesel at 10–90 % is 0.37–7.83 % at 20 °C. Meanwhile, the particle size of ABE/IBE mixed fuels is about 2–30 nm, exhibiting a microemulsion with thermodynamic stability. The anhydrous or water-containing mixed fuel with the ratio of ABE (IBE) of 10%–50 % meets the range of the density and kinematic viscosity of diesel engine fuel. The mixed fuel is non-corrosive to copper without water, and a water content of about 3 % or higher will increase the risk of engine corrosion at 20 °C. Despite the addition of biofuel and water, studies on energy combustion performance and pollutant emission performance have found that appropriate addition of biofuel and water can produce higher power output and lower pollutant emissions than traditional fossil fuels, with ABE20W0.5 being the optimal. This study demonstrates the great potential of ABE and IBE as biofuels to achieve carbon neutrality goals, providing novel research direction for green alternative fuels in the future.</p></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The fuel property and application prospect of water-containing biofuel from Clostridium acetobutylicum fermentation products\",\"authors\":\"Zhenlong Geng ,&nbsp;Yangyi Wu ,&nbsp;Hongyuan Wei ,&nbsp;Yang Zhao ,&nbsp;Teng Xu ,&nbsp;Chao Jin ,&nbsp;Haifeng Liu\",\"doi\":\"10.1016/j.biombioe.2024.107263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biobutanol, a promising green alternative fuel, fermented from <em>Clostridium acetobutylicum</em>, while its high-cost and limited yield constraining its development. ABE (acetone-butanol-ethanol) and IBE (isopropanol-butanol-ethanol) are mixed fermentation products from non-edible biomass raw materials, using them together with water as alternative fuels will reduce industrial production costs and save fossil fuels. Therefore, this study conducted a multifaceted experimental evaluation on ABE/IBE mixed fuels with different water content, demonstrating that it has good water holding capacity when mixed with traditional fossil fuels. Taking ABE (3: 6: 1) as an example, its water holding capacity after mixing with diesel at 10–90 % is 0.37–7.83 % at 20 °C. Meanwhile, the particle size of ABE/IBE mixed fuels is about 2–30 nm, exhibiting a microemulsion with thermodynamic stability. The anhydrous or water-containing mixed fuel with the ratio of ABE (IBE) of 10%–50 % meets the range of the density and kinematic viscosity of diesel engine fuel. The mixed fuel is non-corrosive to copper without water, and a water content of about 3 % or higher will increase the risk of engine corrosion at 20 °C. Despite the addition of biofuel and water, studies on energy combustion performance and pollutant emission performance have found that appropriate addition of biofuel and water can produce higher power output and lower pollutant emissions than traditional fossil fuels, with ABE20W0.5 being the optimal. This study demonstrates the great potential of ABE and IBE as biofuels to achieve carbon neutrality goals, providing novel research direction for green alternative fuels in the future.</p></div>\",\"PeriodicalId\":253,\"journal\":{\"name\":\"Biomass & Bioenergy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass & Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0961953424002162\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424002162","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

生物丁醇是一种前景广阔的绿色替代燃料,由乙酰丁酸梭菌发酵而成,但其成本高、产量有限,制约了其发展。ABE(丙酮-丁醇-乙醇)和 IBE(异丙醇-丁醇-乙醇)是以非食用生物质为原料的混合发酵产物,将它们与水一起用作替代燃料可降低工业生产成本,节约化石燃料。因此,本研究对不同含水量的 ABE/IBE 混合燃料进行了多方面的实验评估,证明其与传统化石燃料混合后具有良好的保水能力。以 ABE(3:6:1)为例,在 20 °C条件下,与柴油混合 10-90 % 后,其持水率为 0.37-7.83%。同时,ABE/IBE 混合燃料的粒径约为 2-30 nm,呈现出一种热力学稳定的微乳液。ABE (IBE)比例为 10%-50%的无水或含水混合燃料符合柴油发动机燃料的密度和运动粘度范围。混合燃料在不含水的情况下对铜无腐蚀性,而含水量约为 3% 或更高会增加发动机在 20 °C 下的腐蚀风险。尽管添加了生物燃料和水,但对能量燃烧性能和污染物排放性能的研究发现,与传统化石燃料相比,适当添加生物燃料和水可产生更高的功率输出和更低的污染物排放,其中 ABE20W0.5 最佳。这项研究证明了 ABE 和 IBE 作为生物燃料在实现碳中和目标方面的巨大潜力,为未来的绿色替代燃料提供了新的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The fuel property and application prospect of water-containing biofuel from Clostridium acetobutylicum fermentation products

Biobutanol, a promising green alternative fuel, fermented from Clostridium acetobutylicum, while its high-cost and limited yield constraining its development. ABE (acetone-butanol-ethanol) and IBE (isopropanol-butanol-ethanol) are mixed fermentation products from non-edible biomass raw materials, using them together with water as alternative fuels will reduce industrial production costs and save fossil fuels. Therefore, this study conducted a multifaceted experimental evaluation on ABE/IBE mixed fuels with different water content, demonstrating that it has good water holding capacity when mixed with traditional fossil fuels. Taking ABE (3: 6: 1) as an example, its water holding capacity after mixing with diesel at 10–90 % is 0.37–7.83 % at 20 °C. Meanwhile, the particle size of ABE/IBE mixed fuels is about 2–30 nm, exhibiting a microemulsion with thermodynamic stability. The anhydrous or water-containing mixed fuel with the ratio of ABE (IBE) of 10%–50 % meets the range of the density and kinematic viscosity of diesel engine fuel. The mixed fuel is non-corrosive to copper without water, and a water content of about 3 % or higher will increase the risk of engine corrosion at 20 °C. Despite the addition of biofuel and water, studies on energy combustion performance and pollutant emission performance have found that appropriate addition of biofuel and water can produce higher power output and lower pollutant emissions than traditional fossil fuels, with ABE20W0.5 being the optimal. This study demonstrates the great potential of ABE and IBE as biofuels to achieve carbon neutrality goals, providing novel research direction for green alternative fuels in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
期刊最新文献
Data-driven based financial analysis of concentrated solar power integrating biomass and thermal energy storage: A profitability perspective Insight into lignin oxidative depolymerization in ionic liquids and deep eutectic solvents Lignocellulosic biomass to glycols: Simultaneous conversion of cellulose, hemicellulose and lignin using an organic solvent Response of aromatic Rosa grass to different proportions of fly ash and vermicompost Microwave-assisted pyrolysis of biomass waste for production of high-quality biochar: Corn stover and hemp stem case studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1