MAM-STM:用于自主控制单个分子朝向特定表面位置的软件

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-06-06 DOI:10.1016/j.cpc.2024.109264
Bernhard Ramsauer, Johannes J. Cartus, Oliver T. Hofmann
{"title":"MAM-STM:用于自主控制单个分子朝向特定表面位置的软件","authors":"Bernhard Ramsauer,&nbsp;Johannes J. Cartus,&nbsp;Oliver T. Hofmann","doi":"10.1016/j.cpc.2024.109264","DOIUrl":null,"url":null,"abstract":"<div><p>In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.</p></div><div><h3>PROGRAM SUMMARY</h3><p>Program title: MAM-STM</p><p>CPC Library link to program files: (to be added by Technical Editor)</p><p>Developer's repository link: https://gitlab.tugraz.at/software_public/mam_stm.git</p><p>Code Ocean capsule: (to be added by Technical Editor)</p><p>Licensing provisions: GNU General Public License 3 (GPL)</p><p>Programming language: Python 3</p><p>Nature of problem: Achieving precise control over the arrangement of individual molecules on surfaces is essential for advancing nanofabrication and understanding molecular interaction processes. While self-assembly offers a method for forming nanostructures, achieving arbitrary arrangements of moieties remains difficult. Current approaches, such as scanning probe microscopy (SPM), require extensive manual intervention and precise control is difficult to achieve consistently due to the stochastic nature of quantum mechanical systems at the nanoscale. Thus, learning to manipulate several moieties in order to build even relatively small structures is challenging and time consuming and the automation through conventional expert systems is hindered by the lack of prior knowledge about the surface-moiety interaction processes.</p><p>Solution method: This scenario is ideal for machine learning algorithms, like reinforcement learning (RL), which do not require an underlying model but are able to autonomously learn the optimal manipulation parameters by performing manipulations directly at the machine. Introducing MAM-STM, which stands for Molecular and Atomic Manipulation via Scanning Tunneling Microscopy. MAM-STM allows to control molecules and atoms by learning the manipulation parameters for either vertical or lateral manipulations. However, the vast number of manipulation parameter combinations and the inefficient learning procedure of RL agents exhibit several challenges. MAM-STM overcomes these challenges with an autonomous masking routine that eliminates manipulation parameters that induce structural changes to the moiety or lift it off the surface. Additionally, a sophisticated Q-learning approach is developed that speeds up the learning procedure, enabling molecular manipulations within one day of training.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524001875/pdfft?md5=74c3002522a3586528e738564a9ff30d&pid=1-s2.0-S0010465524001875-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MAM-STM: A software for autonomous control of single moieties towards specific surface positions\",\"authors\":\"Bernhard Ramsauer,&nbsp;Johannes J. Cartus,&nbsp;Oliver T. Hofmann\",\"doi\":\"10.1016/j.cpc.2024.109264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.</p></div><div><h3>PROGRAM SUMMARY</h3><p>Program title: MAM-STM</p><p>CPC Library link to program files: (to be added by Technical Editor)</p><p>Developer's repository link: https://gitlab.tugraz.at/software_public/mam_stm.git</p><p>Code Ocean capsule: (to be added by Technical Editor)</p><p>Licensing provisions: GNU General Public License 3 (GPL)</p><p>Programming language: Python 3</p><p>Nature of problem: Achieving precise control over the arrangement of individual molecules on surfaces is essential for advancing nanofabrication and understanding molecular interaction processes. While self-assembly offers a method for forming nanostructures, achieving arbitrary arrangements of moieties remains difficult. Current approaches, such as scanning probe microscopy (SPM), require extensive manual intervention and precise control is difficult to achieve consistently due to the stochastic nature of quantum mechanical systems at the nanoscale. Thus, learning to manipulate several moieties in order to build even relatively small structures is challenging and time consuming and the automation through conventional expert systems is hindered by the lack of prior knowledge about the surface-moiety interaction processes.</p><p>Solution method: This scenario is ideal for machine learning algorithms, like reinforcement learning (RL), which do not require an underlying model but are able to autonomously learn the optimal manipulation parameters by performing manipulations directly at the machine. Introducing MAM-STM, which stands for Molecular and Atomic Manipulation via Scanning Tunneling Microscopy. MAM-STM allows to control molecules and atoms by learning the manipulation parameters for either vertical or lateral manipulations. However, the vast number of manipulation parameter combinations and the inefficient learning procedure of RL agents exhibit several challenges. MAM-STM overcomes these challenges with an autonomous masking routine that eliminates manipulation parameters that induce structural changes to the moiety or lift it off the surface. Additionally, a sophisticated Q-learning approach is developed that speeds up the learning procedure, enabling molecular manipulations within one day of training.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010465524001875/pdfft?md5=74c3002522a3586528e738564a9ff30d&pid=1-s2.0-S0010465524001875-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524001875\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524001875","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇论文中,我们介绍了 MAM-STM,这是一款利用扫描隧道显微镜(STM)的尖端自主操纵任意分子在金属表面特定位置的软件。为特定分子寻找最佳操作参数既具有挑战性又耗费时间,即使是人类专家也不例外。MAM-STM 将自主数据采集与复杂的 Q-learning 实现相结合,以确定最佳偏置电压、z-接近距离和针尖相对于分子的位置。这样就可以随意排列单个分子和原子。在这项工作中,我们提供了一个基于模拟响应的教程,全面解释了如何使用和定制 MAM-STM。此外,我们还在模拟随机环境中通过基准测试评估了机器学习算法的性能:MAM-STMCPC 程序库链接到程序文件:(由技术编辑添加)开发者资源库链接:https://gitlab.tugraz.at/software_public/mam_stm.gitCode 海洋胶囊:(由技术编辑添加)许可条款:GNU General Public License 3 (GPL) 编程语言:Python 3Python 3问题本质:实现对单个分子在表面上排列的精确控制对于推进纳米制造和了解分子相互作用过程至关重要。虽然自组装提供了一种形成纳米结构的方法,但实现分子的任意排列仍然十分困难。目前的方法,如扫描探针显微镜(SPM),需要大量的人工干预,而且由于量子力学系统在纳米尺度上的随机性,精确控制很难持续实现。因此,学习如何操作多个分子以构建即使是相对较小的结构,既具有挑战性又耗费时间,而且由于缺乏有关表面-分子相互作用过程的先验知识,通过传统专家系统实现自动化也会受到阻碍:这种情况非常适合机器学习算法,如强化学习(RL),它不需要底层模型,而是能够通过直接在机器上执行操作来自主学习最佳操作参数。MAM-STM 是通过扫描隧道显微镜进行分子和原子操作的缩写。MAM-STM 可以通过学习垂直或横向操作参数来控制分子和原子。然而,大量的操纵参数组合和低效的 RL 代理学习程序带来了一些挑战。MAM-STM 通过自主屏蔽程序克服了这些挑战,该程序可消除引起分子结构变化或使其脱离表面的操作参数。此外,还开发了一种复杂的 Q-learning 方法,可加快学习过程,从而在一天的训练时间内完成分子操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MAM-STM: A software for autonomous control of single moieties towards specific surface positions

In this publication we introduce MAM-STM, a software to autonomously manipulate arbitrary moieties towards specific positions on a metal surface utilizing the tip of a scanning tunneling microscope (STM). Finding the optimal manipulation parameters for a specific moiety is challenging and time consuming, even for human experts. MAM-STM combines autonomous data acquisition with a sophisticated Q-learning implementation to determine the optimal bias voltage, the z-approach distance, and the tip position relative to the moiety. This then allows to arrange single molecules and atoms at will. In this work, we provide a tutorial based on a simulated response to offer a comprehensive explanation on how to use and customize MAM-STM. Additionally, we assess the performance of the machine learning algorithm by benchmarking it within a simulated stochastic environment.

PROGRAM SUMMARY

Program title: MAM-STM

CPC Library link to program files: (to be added by Technical Editor)

Developer's repository link: https://gitlab.tugraz.at/software_public/mam_stm.git

Code Ocean capsule: (to be added by Technical Editor)

Licensing provisions: GNU General Public License 3 (GPL)

Programming language: Python 3

Nature of problem: Achieving precise control over the arrangement of individual molecules on surfaces is essential for advancing nanofabrication and understanding molecular interaction processes. While self-assembly offers a method for forming nanostructures, achieving arbitrary arrangements of moieties remains difficult. Current approaches, such as scanning probe microscopy (SPM), require extensive manual intervention and precise control is difficult to achieve consistently due to the stochastic nature of quantum mechanical systems at the nanoscale. Thus, learning to manipulate several moieties in order to build even relatively small structures is challenging and time consuming and the automation through conventional expert systems is hindered by the lack of prior knowledge about the surface-moiety interaction processes.

Solution method: This scenario is ideal for machine learning algorithms, like reinforcement learning (RL), which do not require an underlying model but are able to autonomously learn the optimal manipulation parameters by performing manipulations directly at the machine. Introducing MAM-STM, which stands for Molecular and Atomic Manipulation via Scanning Tunneling Microscopy. MAM-STM allows to control molecules and atoms by learning the manipulation parameters for either vertical or lateral manipulations. However, the vast number of manipulation parameter combinations and the inefficient learning procedure of RL agents exhibit several challenges. MAM-STM overcomes these challenges with an autonomous masking routine that eliminates manipulation parameters that induce structural changes to the moiety or lift it off the surface. Additionally, a sophisticated Q-learning approach is developed that speeds up the learning procedure, enabling molecular manipulations within one day of training.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
A novel model for direct numerical simulation of suspension dynamics with arbitrarily shaped convex particles Editorial Board Study α decay and proton emission based on data-driven symbolic regression Efficient determination of free energies of non-ideal solid solutions via hybrid Monte Carlo simulations 1D drift-kinetic numerical model based on semi-implicit particle-in-cell method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1