利用离子门储层实验证明的高性能深层储层计算机

Daiki Nishioka, Takashi Tsuchiya, Masataka Imura, Yasuo Koide, Tohru Higuchi, Kazuya Terabe
{"title":"利用离子门储层实验证明的高性能深层储层计算机","authors":"Daiki Nishioka, Takashi Tsuchiya, Masataka Imura, Yasuo Koide, Tohru Higuchi, Kazuya Terabe","doi":"10.1038/s44172-024-00227-y","DOIUrl":null,"url":null,"abstract":"While physical reservoir computing is a promising way to achieve low power consumption neuromorphic computing, its computational performance is still insufficient at a practical level. One promising approach to improving its performance is deep reservoir computing, in which the component reservoirs are multi-layered. However, all of the deep-reservoir schemes reported so far have been effective only for simulation reservoirs and limited physical reservoirs, and there have been no reports of nanodevice implementations. Here, as an ionics-based neuromorphic nanodevice implementation of deep-reservoir computing, we report a demonstration of deep physical reservoir computing with maximum of four layers using an ion gating reservoir, which is a small and high-performance physical reservoir. While the previously reported deep-reservoir scheme did not improve the performance of the ion gating reservoir, our deep-ion gating reservoir achieved a normalized mean squared error of 9.08 × 10−3 on a second-order nonlinear autoregressive moving average task, which is the best performance of any physical reservoir so far reported in this task. More importantly, the device outperformed full simulation reservoir computing. The dramatic performance improvement of the ion gating reservoir with our deep-reservoir computing architecture paves the way for high-performance, large-scale, physical neural network devices. Daiki Nishioka and colleagues show a nanodevice implementation of deep reservoir computing using an ion-gating reservoir, achieving record-low error rates on a complex computational task. This device is more efficient and scalable for brain-like computing systems exploiting physical systems.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00227-y.pdf","citationCount":"0","resultStr":"{\"title\":\"A high-performance deep reservoir computer experimentally demonstrated with ion-gating reservoirs\",\"authors\":\"Daiki Nishioka, Takashi Tsuchiya, Masataka Imura, Yasuo Koide, Tohru Higuchi, Kazuya Terabe\",\"doi\":\"10.1038/s44172-024-00227-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While physical reservoir computing is a promising way to achieve low power consumption neuromorphic computing, its computational performance is still insufficient at a practical level. One promising approach to improving its performance is deep reservoir computing, in which the component reservoirs are multi-layered. However, all of the deep-reservoir schemes reported so far have been effective only for simulation reservoirs and limited physical reservoirs, and there have been no reports of nanodevice implementations. Here, as an ionics-based neuromorphic nanodevice implementation of deep-reservoir computing, we report a demonstration of deep physical reservoir computing with maximum of four layers using an ion gating reservoir, which is a small and high-performance physical reservoir. While the previously reported deep-reservoir scheme did not improve the performance of the ion gating reservoir, our deep-ion gating reservoir achieved a normalized mean squared error of 9.08 × 10−3 on a second-order nonlinear autoregressive moving average task, which is the best performance of any physical reservoir so far reported in this task. More importantly, the device outperformed full simulation reservoir computing. The dramatic performance improvement of the ion gating reservoir with our deep-reservoir computing architecture paves the way for high-performance, large-scale, physical neural network devices. Daiki Nishioka and colleagues show a nanodevice implementation of deep reservoir computing using an ion-gating reservoir, achieving record-low error rates on a complex computational task. This device is more efficient and scalable for brain-like computing systems exploiting physical systems.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00227-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00227-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00227-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然物理水库计算是实现低功耗神经形态计算的一种有前途的方法,但其计算性能在实用层面上仍然不足。提高其性能的一个有前途的方法是深层水库计算,在这种方法中,水库的组成部分是多层的。然而,迄今为止报道的所有深层水库方案都只对模拟水库和有限的物理水库有效,还没有纳米设备实现的报道。在此,作为基于离子技术的神经形态纳米设备的深层存储计算实施方案,我们报告了利用离子门存储库(一种小型高性能物理存储库)实现最多四层深层物理存储计算的演示。虽然之前报道的深层水库方案没有提高离子门控水库的性能,但我们的深层离子门控水库在二阶非线性自回归移动平均任务中实现了 9.08 × 10-3 的归一化均方误差,这是迄今为止报道的物理水库在该任务中的最佳性能。更重要的是,该设备的性能优于全仿真水库计算。采用我们的深度水库计算架构的离子门控水库的性能大幅提高,为高性能、大规模物理神经网络设备铺平了道路。Daiki Nishioka 及其同事展示了利用离子门水库实现深度水库计算的纳米设备,在复杂的计算任务中实现了创纪录的低错误率。对于利用物理系统的类脑计算系统来说,这种设备效率更高、可扩展性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A high-performance deep reservoir computer experimentally demonstrated with ion-gating reservoirs
While physical reservoir computing is a promising way to achieve low power consumption neuromorphic computing, its computational performance is still insufficient at a practical level. One promising approach to improving its performance is deep reservoir computing, in which the component reservoirs are multi-layered. However, all of the deep-reservoir schemes reported so far have been effective only for simulation reservoirs and limited physical reservoirs, and there have been no reports of nanodevice implementations. Here, as an ionics-based neuromorphic nanodevice implementation of deep-reservoir computing, we report a demonstration of deep physical reservoir computing with maximum of four layers using an ion gating reservoir, which is a small and high-performance physical reservoir. While the previously reported deep-reservoir scheme did not improve the performance of the ion gating reservoir, our deep-ion gating reservoir achieved a normalized mean squared error of 9.08 × 10−3 on a second-order nonlinear autoregressive moving average task, which is the best performance of any physical reservoir so far reported in this task. More importantly, the device outperformed full simulation reservoir computing. The dramatic performance improvement of the ion gating reservoir with our deep-reservoir computing architecture paves the way for high-performance, large-scale, physical neural network devices. Daiki Nishioka and colleagues show a nanodevice implementation of deep reservoir computing using an ion-gating reservoir, achieving record-low error rates on a complex computational task. This device is more efficient and scalable for brain-like computing systems exploiting physical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion Ultra-lightweight rechargeable battery with enhanced gravimetric energy densities >750 Wh kg−1 in lithium–sulfur pouch cell An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1