Andrzej Kurenda, Domenica Jenni, Sandro Lecci, Anke Buchholz
{"title":"将光线引入黑暗--根结线虫侵扰和实时杀线虫药效的植物电生理监测","authors":"Andrzej Kurenda, Domenica Jenni, Sandro Lecci, Anke Buchholz","doi":"10.1007/s10340-024-01798-7","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the infestation of tomato plants by the plant-parasitic nematode, <i>M. incognita</i>, and its accurate detection by plant electrophysiology (PE). Dedicated tests were done on whole plants to record electrophysiological signals from nematode infested and uninfested plants and to establish a trained model indicating nematode-induced stress. Monitoring nematode-induced stress by PE confirmed the results obtained by assessing root galls and quantifying xylem sap 3 to 4 weeks after infestation. The machine learning model captured the stress intensities and the time course of plant damage caused by nematodes. Stress caused by second-stage juveniles (J2) infestation appeared 3 to 5 days after infestation (DAI), whereas stress caused by egg infestation was detected 5 to 7 days later (10–13 DAI). For the first time, the real-time effectiveness of nematicides was recorded in further tests. Nematode infested plants treated preventatively with cyclobutrifluram (TYMIRIUM® technology) showed a delayed and short (about 3 days) period of low stress intensity, whereas infested but untreated plants showed a period of maximum stress for about 12 days. In addition, depending on the type of application (preventative or curative), different modes of biological activity of IRAC group N-2 and N-3 nematicides (fluopyram, abamectin) could be captured by PE signalling. PE offers a new way of monitoring plant health in real time, which is particularly valuable for accessing ‘invisible’ pests, such as plant-parasitic nematodes in the soil.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"44 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bringing light into the dark—plant electrophysiological monitoring of root knot nematode infestation and real-time nematicide efficacy\",\"authors\":\"Andrzej Kurenda, Domenica Jenni, Sandro Lecci, Anke Buchholz\",\"doi\":\"10.1007/s10340-024-01798-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the infestation of tomato plants by the plant-parasitic nematode, <i>M. incognita</i>, and its accurate detection by plant electrophysiology (PE). Dedicated tests were done on whole plants to record electrophysiological signals from nematode infested and uninfested plants and to establish a trained model indicating nematode-induced stress. Monitoring nematode-induced stress by PE confirmed the results obtained by assessing root galls and quantifying xylem sap 3 to 4 weeks after infestation. The machine learning model captured the stress intensities and the time course of plant damage caused by nematodes. Stress caused by second-stage juveniles (J2) infestation appeared 3 to 5 days after infestation (DAI), whereas stress caused by egg infestation was detected 5 to 7 days later (10–13 DAI). For the first time, the real-time effectiveness of nematicides was recorded in further tests. Nematode infested plants treated preventatively with cyclobutrifluram (TYMIRIUM® technology) showed a delayed and short (about 3 days) period of low stress intensity, whereas infested but untreated plants showed a period of maximum stress for about 12 days. In addition, depending on the type of application (preventative or curative), different modes of biological activity of IRAC group N-2 and N-3 nematicides (fluopyram, abamectin) could be captured by PE signalling. PE offers a new way of monitoring plant health in real time, which is particularly valuable for accessing ‘invisible’ pests, such as plant-parasitic nematodes in the soil.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01798-7\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01798-7","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Bringing light into the dark—plant electrophysiological monitoring of root knot nematode infestation and real-time nematicide efficacy
This study investigated the infestation of tomato plants by the plant-parasitic nematode, M. incognita, and its accurate detection by plant electrophysiology (PE). Dedicated tests were done on whole plants to record electrophysiological signals from nematode infested and uninfested plants and to establish a trained model indicating nematode-induced stress. Monitoring nematode-induced stress by PE confirmed the results obtained by assessing root galls and quantifying xylem sap 3 to 4 weeks after infestation. The machine learning model captured the stress intensities and the time course of plant damage caused by nematodes. Stress caused by second-stage juveniles (J2) infestation appeared 3 to 5 days after infestation (DAI), whereas stress caused by egg infestation was detected 5 to 7 days later (10–13 DAI). For the first time, the real-time effectiveness of nematicides was recorded in further tests. Nematode infested plants treated preventatively with cyclobutrifluram (TYMIRIUM® technology) showed a delayed and short (about 3 days) period of low stress intensity, whereas infested but untreated plants showed a period of maximum stress for about 12 days. In addition, depending on the type of application (preventative or curative), different modes of biological activity of IRAC group N-2 and N-3 nematicides (fluopyram, abamectin) could be captured by PE signalling. PE offers a new way of monitoring plant health in real time, which is particularly valuable for accessing ‘invisible’ pests, such as plant-parasitic nematodes in the soil.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.