聚碲方形平面链诱导的非谐波性使 Al2Te5 单层具有超低热导率和超高热电效率

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-06-20 DOI:10.1039/d4cp01577k
Iraj Maleki Shahrivar, S. Mehdi Vaez Allaei, Shahab Naghavi
{"title":"聚碲方形平面链诱导的非谐波性使 Al2Te5 单层具有超低热导率和超高热电效率","authors":"Iraj Maleki Shahrivar, S. Mehdi Vaez Allaei, Shahab Naghavi","doi":"10.1039/d4cp01577k","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) metal chalcogenides provide rich ground for the development of nanoscale thermoelectrics, although achieving optimal thermoelectric efficiency has yet to be a challenge. Here, we leverage the unique chemistry of tellurium (Te), renowned for its hypervalent bonding and catenation abilities, to tackle this challenge as manifested in Al<small><sub>2</sub></small>Te<small><sub>3</sub></small> and Al<small><sub>2</sub></small>Te<small><sub>5</sub></small> monolayers. While the former forms a straightforward covalent Al–Te network, the latter adopts a more intricate bonding mechanism, enabled by eccentric features of Te chemistry, to maintain charge balance. In Al<small><sub>2</sub></small>Te<small><sub>5</sub></small>, a square planar chain (SPC) known as polytelluride [Te<small><sub>3</sub></small>]<small><sup>2-</sup></small> is neutralized by covalently bonded [Al<small><sub>2</sub></small>Te<small><sub>2</sub></small>]<small><sup>2+</sup></small> framework. The hypervalent nature of Te results in bizarre Born effective charges of 7 and -4 for adjacent Te atoms within the square planar chain, the feature that induces significant anharmonicity, and leads to a glass-limit of lattice thermal conductivity (κ<small><sub>L</sub></small>) in Al<small><sub>2</sub></small>Te<small><sub>5</sub></small> monolayers. Enhanced anharmonic lattice vibrations and the accordion pattern bestow glass-like, strongly anisotropic thermal conductivity to the Al<small><sub>2</sub></small>Te<small><sub>5</sub></small> monolayer. The calculated κ<small><sub>L</sub></small> values of 1.8 and 0.5 Wm<small><sup>-1</sup></small>K<small><sup>-1</sup></small> along the a- and b-axes at 600 K are one order of magnitude lower than those of Al<small><sub>2</sub></small>Te<small><sub>3</sub></small>, and even lower than monolayers that contain heavy cations like Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>. Moreover, the tellurium chain dominates the valence band maximum and conduction band minimum of Al<small><sub>2</sub></small>Te<small><sub>5</sub></small>, leading to a high valley degeneracy of 10, and thus a high power factor and figure of merit (zT). Using rigorous first-principles calculations of electron relaxation time, the estimated hole-doped and electron-doped zT of, respectively, 1.5 and 0.5 at 600 K is achieved for Al<small><sub>2</sub></small>Te<small><sub>5</sub></small>. The pioneering zT of Al<small><sub>2</sub></small>Te<small><sub>5</sub></small> compared to that of Al<small><sub>2</sub></small>Te<small><sub>3</sub></small> is rooted merely in its amorphous-like lattice thermal transport and its polytelluride chain. These findings underscore the importance of aluminum telluride and polymeric-based inorganic compounds as practical and cost-effective thermoelectric materials, pending further experimental validation.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polytelluride square planar chain induced anharmonicity results in ultralow thermal conductivity and high thermoelectric efficiency in Al2Te5 monolayers\",\"authors\":\"Iraj Maleki Shahrivar, S. Mehdi Vaez Allaei, Shahab Naghavi\",\"doi\":\"10.1039/d4cp01577k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) metal chalcogenides provide rich ground for the development of nanoscale thermoelectrics, although achieving optimal thermoelectric efficiency has yet to be a challenge. Here, we leverage the unique chemistry of tellurium (Te), renowned for its hypervalent bonding and catenation abilities, to tackle this challenge as manifested in Al<small><sub>2</sub></small>Te<small><sub>3</sub></small> and Al<small><sub>2</sub></small>Te<small><sub>5</sub></small> monolayers. While the former forms a straightforward covalent Al–Te network, the latter adopts a more intricate bonding mechanism, enabled by eccentric features of Te chemistry, to maintain charge balance. In Al<small><sub>2</sub></small>Te<small><sub>5</sub></small>, a square planar chain (SPC) known as polytelluride [Te<small><sub>3</sub></small>]<small><sup>2-</sup></small> is neutralized by covalently bonded [Al<small><sub>2</sub></small>Te<small><sub>2</sub></small>]<small><sup>2+</sup></small> framework. The hypervalent nature of Te results in bizarre Born effective charges of 7 and -4 for adjacent Te atoms within the square planar chain, the feature that induces significant anharmonicity, and leads to a glass-limit of lattice thermal conductivity (κ<small><sub>L</sub></small>) in Al<small><sub>2</sub></small>Te<small><sub>5</sub></small> monolayers. Enhanced anharmonic lattice vibrations and the accordion pattern bestow glass-like, strongly anisotropic thermal conductivity to the Al<small><sub>2</sub></small>Te<small><sub>5</sub></small> monolayer. The calculated κ<small><sub>L</sub></small> values of 1.8 and 0.5 Wm<small><sup>-1</sup></small>K<small><sup>-1</sup></small> along the a- and b-axes at 600 K are one order of magnitude lower than those of Al<small><sub>2</sub></small>Te<small><sub>3</sub></small>, and even lower than monolayers that contain heavy cations like Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>. Moreover, the tellurium chain dominates the valence band maximum and conduction band minimum of Al<small><sub>2</sub></small>Te<small><sub>5</sub></small>, leading to a high valley degeneracy of 10, and thus a high power factor and figure of merit (zT). Using rigorous first-principles calculations of electron relaxation time, the estimated hole-doped and electron-doped zT of, respectively, 1.5 and 0.5 at 600 K is achieved for Al<small><sub>2</sub></small>Te<small><sub>5</sub></small>. The pioneering zT of Al<small><sub>2</sub></small>Te<small><sub>5</sub></small> compared to that of Al<small><sub>2</sub></small>Te<small><sub>3</sub></small> is rooted merely in its amorphous-like lattice thermal transport and its polytelluride chain. These findings underscore the importance of aluminum telluride and polymeric-based inorganic compounds as practical and cost-effective thermoelectric materials, pending further experimental validation.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4cp01577k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp01577k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)金属卤化物为纳米级热电技术的发展提供了广阔的前景,但实现最佳热电效率仍是一项挑战。在这里,我们利用碲(Te)独特的化学性质(以其超价键合和梓化能力而闻名)来应对这一挑战,这在 Al2Te3 和 Al2Te5 单层中有所体现。前者形成了直接的共价铝碲网络,而后者则采用了更为复杂的键合机制,通过碲化学的偏心特性来维持电荷平衡。在 Al2Te5 中,被称为多碲化物 [Te3]2- 的方形平面链 (SPC) 被共价键合的 [Al2Te2]2+ 框架中和。Te 的高价特性导致方形平面链中相邻 Te 原子的奇异天生有效电荷数分别为 7 和 -4,这一特性诱发了显著的非谐波性,并导致 Al2Te5 单层的晶格热导率 (κL)达到玻璃极限。增强的非谐波晶格振动和手风琴图案赋予了 Al2Te5 单层玻璃般的强各向异性热导率。在 600 K 时,沿 a 轴和 b 轴计算得出的 κL 值分别为 1.8 和 0.5 Wm-1K-1,比 Al2Te3 低一个数量级,甚至比 Bi2Te3 等含有重阳离子的单层还要低。此外,碲链在 Al2Te5 的价带最大值和导带最小值中占主导地位,导致 10 的高谷退性,因而具有较高的功率因数和优点系数(zT)。通过对电子弛豫时间进行严格的第一原理计算,估计在 600 K 时 Al2Te5 的掺空穴和掺电子 zT 分别为 1.5 和 0.5。与 Al2Te3 相比,Al2Te5 的 zT 具有开创性,其根本原因在于 Al2Te5 的非晶态晶格热传输及其多碲化物链。这些发现强调了碲化铝和聚合物基无机化合物作为实用且具有成本效益的热电材料的重要性,有待进一步的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Polytelluride square planar chain induced anharmonicity results in ultralow thermal conductivity and high thermoelectric efficiency in Al2Te5 monolayers
Two-dimensional (2D) metal chalcogenides provide rich ground for the development of nanoscale thermoelectrics, although achieving optimal thermoelectric efficiency has yet to be a challenge. Here, we leverage the unique chemistry of tellurium (Te), renowned for its hypervalent bonding and catenation abilities, to tackle this challenge as manifested in Al2Te3 and Al2Te5 monolayers. While the former forms a straightforward covalent Al–Te network, the latter adopts a more intricate bonding mechanism, enabled by eccentric features of Te chemistry, to maintain charge balance. In Al2Te5, a square planar chain (SPC) known as polytelluride [Te3]2- is neutralized by covalently bonded [Al2Te2]2+ framework. The hypervalent nature of Te results in bizarre Born effective charges of 7 and -4 for adjacent Te atoms within the square planar chain, the feature that induces significant anharmonicity, and leads to a glass-limit of lattice thermal conductivity (κL) in Al2Te5 monolayers. Enhanced anharmonic lattice vibrations and the accordion pattern bestow glass-like, strongly anisotropic thermal conductivity to the Al2Te5 monolayer. The calculated κL values of 1.8 and 0.5 Wm-1K-1 along the a- and b-axes at 600 K are one order of magnitude lower than those of Al2Te3, and even lower than monolayers that contain heavy cations like Bi2Te3. Moreover, the tellurium chain dominates the valence band maximum and conduction band minimum of Al2Te5, leading to a high valley degeneracy of 10, and thus a high power factor and figure of merit (zT). Using rigorous first-principles calculations of electron relaxation time, the estimated hole-doped and electron-doped zT of, respectively, 1.5 and 0.5 at 600 K is achieved for Al2Te5. The pioneering zT of Al2Te5 compared to that of Al2Te3 is rooted merely in its amorphous-like lattice thermal transport and its polytelluride chain. These findings underscore the importance of aluminum telluride and polymeric-based inorganic compounds as practical and cost-effective thermoelectric materials, pending further experimental validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Characterization of changes in the electronic structure of platinum sub-nanoclusters supported on graphene induced by oxygen adsorption. Molecular dynamics in the gas phase. Modeling the kinetics of hydrogen abstraction reactions in nitrogen-containing compounds via group additivity. Understanding the electrochemical properties of Mg-doped Li2MnO3: first-principles calculations. Effect of hydrostatic pressure on charge carriers in a conducting pyrrole-co-poly(pyrrole-3-carboxylic) copolymer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1