通过阳离子组成管理缓解宽带隙过氧化物中的卤化物偏析

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL ACS Energy Letters Pub Date : 2024-06-20 DOI:10.1021/acsenergylett.4c01281
Majid Safdari, Daehan Kim, Adam Balvanz, Mercouri G. Kanatzidis
{"title":"通过阳离子组成管理缓解宽带隙过氧化物中的卤化物偏析","authors":"Majid Safdari, Daehan Kim, Adam Balvanz, Mercouri G. Kanatzidis","doi":"10.1021/acsenergylett.4c01281","DOIUrl":null,"url":null,"abstract":"Light-induced phase segregation poses challenges for the application of mixed-halide hybrid perovskites in photovoltaics, causing voltage deficits. Here, we investigate the role of chemical composition in improving the photostability of wide bandgap mixed-halide perovskites. We partially substituted the formamidinium cation in the composition of (Cs<sub>0.17</sub>FA<sub>0.83</sub>)Pb(Br<sub>0.2</sub>I<sub>0.8</sub>)<sub>3</sub> with seven alternative cations to achieve a slight blue shift in the bandgap, typically achieved by increasing bromide content. Among alternative cations, dimethylammonium (DMA) and acetamidinium (Ac) induced greater blue shifts at 10% concentration without forming a new low-dimensional second phase. Photoluminescence studies, which analyzed the halide segregation induced by high-power laser irradiation of all new compositions, revealed reduced phase segregation for DMA and Ac compositions. Further adjustments, e.g., increased cesium content, effectively compensated for the lower bromide content in the bandgap while enhancing light stability. Among all compositions, Cs<sub>0.25</sub>FA<sub>0.65</sub>DMA<sub>0.1</sub>Pb(Br<sub>0.2</sub>I<sub>0.8</sub>)<sub>3</sub> exhibited enhanced photostability. These findings highlight the potential of structural modifications to produce highly stable compositions with the desired bandgap, paving the way for the development of stable perovskite solar cells.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of Halide Segregation by Cation Composition Management in Wide Bandgap Perovskites\",\"authors\":\"Majid Safdari, Daehan Kim, Adam Balvanz, Mercouri G. Kanatzidis\",\"doi\":\"10.1021/acsenergylett.4c01281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light-induced phase segregation poses challenges for the application of mixed-halide hybrid perovskites in photovoltaics, causing voltage deficits. Here, we investigate the role of chemical composition in improving the photostability of wide bandgap mixed-halide perovskites. We partially substituted the formamidinium cation in the composition of (Cs<sub>0.17</sub>FA<sub>0.83</sub>)Pb(Br<sub>0.2</sub>I<sub>0.8</sub>)<sub>3</sub> with seven alternative cations to achieve a slight blue shift in the bandgap, typically achieved by increasing bromide content. Among alternative cations, dimethylammonium (DMA) and acetamidinium (Ac) induced greater blue shifts at 10% concentration without forming a new low-dimensional second phase. Photoluminescence studies, which analyzed the halide segregation induced by high-power laser irradiation of all new compositions, revealed reduced phase segregation for DMA and Ac compositions. Further adjustments, e.g., increased cesium content, effectively compensated for the lower bromide content in the bandgap while enhancing light stability. Among all compositions, Cs<sub>0.25</sub>FA<sub>0.65</sub>DMA<sub>0.1</sub>Pb(Br<sub>0.2</sub>I<sub>0.8</sub>)<sub>3</sub> exhibited enhanced photostability. These findings highlight the potential of structural modifications to produce highly stable compositions with the desired bandgap, paving the way for the development of stable perovskite solar cells.\",\"PeriodicalId\":16,\"journal\":{\"name\":\"ACS Energy Letters \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Energy Letters \",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsenergylett.4c01281\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c01281","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光诱导的相分离给混合卤化物混合包晶在光伏领域的应用带来了挑战,导致电压不足。在此,我们研究了化学成分在改善宽带隙混合卤化物过氧化物光稳定性方面的作用。我们用七种替代阳离子部分取代了 (Cs0.17FA0.83)Pb(Br0.2I0.8)3 组成中的甲脒阳离子,以实现带隙的轻微蓝移,这通常是通过增加溴化物含量来实现的。在替代阳离子中,二甲基铵(DMA)和乙酰氨基铵(Ac)在浓度为 10%时会诱发更大的蓝移,但不会形成新的低维第二相。光致发光研究分析了所有新成分在高功率激光照射下引起的卤化物偏析,发现 DMA 和 Ac 成分的相偏析减少了。进一步的调整,如增加铯的含量,有效地弥补了带隙中溴化物含量的降低,同时提高了光稳定性。在所有成分中,Cs0.25FA0.65DMA0.1Pb(Br0.2I0.8)3 的光稳定性更强。这些发现凸显了结构改性在生产具有所需带隙的高稳定性成分方面的潜力,为开发稳定的过氧化物太阳能电池铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigation of Halide Segregation by Cation Composition Management in Wide Bandgap Perovskites
Light-induced phase segregation poses challenges for the application of mixed-halide hybrid perovskites in photovoltaics, causing voltage deficits. Here, we investigate the role of chemical composition in improving the photostability of wide bandgap mixed-halide perovskites. We partially substituted the formamidinium cation in the composition of (Cs0.17FA0.83)Pb(Br0.2I0.8)3 with seven alternative cations to achieve a slight blue shift in the bandgap, typically achieved by increasing bromide content. Among alternative cations, dimethylammonium (DMA) and acetamidinium (Ac) induced greater blue shifts at 10% concentration without forming a new low-dimensional second phase. Photoluminescence studies, which analyzed the halide segregation induced by high-power laser irradiation of all new compositions, revealed reduced phase segregation for DMA and Ac compositions. Further adjustments, e.g., increased cesium content, effectively compensated for the lower bromide content in the bandgap while enhancing light stability. Among all compositions, Cs0.25FA0.65DMA0.1Pb(Br0.2I0.8)3 exhibited enhanced photostability. These findings highlight the potential of structural modifications to produce highly stable compositions with the desired bandgap, paving the way for the development of stable perovskite solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
期刊最新文献
High Entropy Oxides: Mapping the Landscape from Fundamentals to Future Vistas Ionocovalency of the Central Metal Halide Bond-Dependent Chemical Compatibility of Halide Solid Electrolytes with Li6PS5Cl Using Electron Microscopy to Explore Solar Cell Interfaces: Microstructures, Efficiency, and Stability Operando Raman Gradient Analysis for Temperature-Dependent Electrolyte Characterization Energy-Efficient Perovskite LEDs with Rec. 2020 Compliance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1