具有低温、弱光、抗结冰/除冰和持久润滑特性的 "蜂巢 "光热润滑多孔泡沫。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-06-21 DOI:10.1021/acs.langmuir.4c01790
Jue Wei, Li Rao, Min Huang*, Xin Xiao and Jian Wang*, 
{"title":"具有低温、弱光、抗结冰/除冰和持久润滑特性的 \"蜂巢 \"光热润滑多孔泡沫。","authors":"Jue Wei,&nbsp;Li Rao,&nbsp;Min Huang*,&nbsp;Xin Xiao and Jian Wang*,&nbsp;","doi":"10.1021/acs.langmuir.4c01790","DOIUrl":null,"url":null,"abstract":"<p >The prevalence of icing in nature has become a significant threat to human work and life, prompting the development of more energy-efficient active/passive combination anti-icing/deicing technologies. In order to overcome the disadvantage of the poor durability of superhydrophobic surfaces, lubricated surfaces inspired by nepenthes have been preferred. In this study, a paraffin and silicone oil-infused photothermal foam (PSIPF) with excellent overall performance was prepared using polypyrrole (PPy) as a photothermal conversion material, a mixture of silicone oil and paraffin as a lubricating fluid, and melamine foam (MF) as a carrier. The surface adhesive strength is less than 20 kPa at −20 °C, the melting time is only 1018 s at an irradiance of 200 W/m<sup>2</sup> and −20 °C (0.2 sun), and surface droplets do not freeze within 1 h at −10 °C. Furthermore, the surface exhibits excellent mechanical durability and stability, maintaining optimal lubrication properties following repeated cycles of icing/deicing, water rinsing, and immersion for 2 days in acid and alkaline conditions. This photothermal lubricated surface with excellent anti-icing/deicing properties at low temperatures and in weak-light environments provides a wider range of applications for equipment at high latitudes and high altitudes.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Honeycomb” Photothermal Lubricated Porous Foam with Low-Temperature, Weak-Light, Anti-Icing/Deicing, and Long-Lasting Lubrication Properties\",\"authors\":\"Jue Wei,&nbsp;Li Rao,&nbsp;Min Huang*,&nbsp;Xin Xiao and Jian Wang*,&nbsp;\",\"doi\":\"10.1021/acs.langmuir.4c01790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The prevalence of icing in nature has become a significant threat to human work and life, prompting the development of more energy-efficient active/passive combination anti-icing/deicing technologies. In order to overcome the disadvantage of the poor durability of superhydrophobic surfaces, lubricated surfaces inspired by nepenthes have been preferred. In this study, a paraffin and silicone oil-infused photothermal foam (PSIPF) with excellent overall performance was prepared using polypyrrole (PPy) as a photothermal conversion material, a mixture of silicone oil and paraffin as a lubricating fluid, and melamine foam (MF) as a carrier. The surface adhesive strength is less than 20 kPa at −20 °C, the melting time is only 1018 s at an irradiance of 200 W/m<sup>2</sup> and −20 °C (0.2 sun), and surface droplets do not freeze within 1 h at −10 °C. Furthermore, the surface exhibits excellent mechanical durability and stability, maintaining optimal lubrication properties following repeated cycles of icing/deicing, water rinsing, and immersion for 2 days in acid and alkaline conditions. This photothermal lubricated surface with excellent anti-icing/deicing properties at low temperatures and in weak-light environments provides a wider range of applications for equipment at high latitudes and high altitudes.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01790\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.4c01790","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自然界普遍存在的结冰现象已成为人类工作和生活的重大威胁,这促使人们开发更节能的主动/被动组合防冰/除冰技术。为了克服超疏水表面耐久性差的缺点,人们更倾向于采用受软骨植物启发的润滑表面。本研究以聚吡咯(PPy)为光热转换材料,以硅油和石蜡的混合物为润滑液,以三聚氰胺泡沫(MF)为载体,制备了一种综合性能优异的石蜡和硅油注入光热泡沫(PSIPF)。在零下 20 °C时,表面粘合强度小于 20 kPa;在辐照度为 200 W/m2 和零下 20 °C(0.2 个太阳)时,熔化时间仅为 1018 秒;在零下 10 °C时,表面液滴在 1 小时内不会冻结。此外,这种表面还具有极佳的机械耐久性和稳定性,在反复循环结冰/除冰、水冲洗以及在酸性和碱性条件下浸泡 2 天之后,仍能保持最佳的润滑特性。这种光热润滑表面在低温和弱光环境下具有优异的抗结冰/除冰性能,可为高纬度和高海拔地区的设备提供更广泛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“Honeycomb” Photothermal Lubricated Porous Foam with Low-Temperature, Weak-Light, Anti-Icing/Deicing, and Long-Lasting Lubrication Properties

The prevalence of icing in nature has become a significant threat to human work and life, prompting the development of more energy-efficient active/passive combination anti-icing/deicing technologies. In order to overcome the disadvantage of the poor durability of superhydrophobic surfaces, lubricated surfaces inspired by nepenthes have been preferred. In this study, a paraffin and silicone oil-infused photothermal foam (PSIPF) with excellent overall performance was prepared using polypyrrole (PPy) as a photothermal conversion material, a mixture of silicone oil and paraffin as a lubricating fluid, and melamine foam (MF) as a carrier. The surface adhesive strength is less than 20 kPa at −20 °C, the melting time is only 1018 s at an irradiance of 200 W/m2 and −20 °C (0.2 sun), and surface droplets do not freeze within 1 h at −10 °C. Furthermore, the surface exhibits excellent mechanical durability and stability, maintaining optimal lubrication properties following repeated cycles of icing/deicing, water rinsing, and immersion for 2 days in acid and alkaline conditions. This photothermal lubricated surface with excellent anti-icing/deicing properties at low temperatures and in weak-light environments provides a wider range of applications for equipment at high latitudes and high altitudes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Mechanism of Sulfate Radical Formation on Activation of Persulfate Using Doped Metal Oxide and Its Role in Degradation of Tartrazine Dye in an Aqueous Solution. Selective SERS Sensing of R6G Molecules Using MoS2 Nanoflowers under Pressure. Synthesis and Fabrication of Metal Cation Intercalation in Multilayered Ti3C2Tx Composite CNF Electrode for Asymmetric Coin Cell Supercapacitors. Unveiling the Electrostatically Driven Collapsing and Relaxation of Polyelectrolyte-Colloid Complexes: A Tunable Pathway to Colloidal Assembly. Preparation and Properties Improvement of Decynediol-Ethoxylate-Modified Trisiloxane Surfactant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1