在枯草芽孢杆菌孢子形成的吞噬阶段,依赖 SpoIIQ 的 SpoIIE 定位有助于隔膜的稳定和分隔。

IF 2.7 3区 生物学 Q3 MICROBIOLOGY Journal of Bacteriology Pub Date : 2024-07-25 Epub Date: 2024-06-21 DOI:10.1128/jb.00220-24
Behzad Dehghani, Christopher D A Rodrigues
{"title":"在枯草芽孢杆菌孢子形成的吞噬阶段,依赖 SpoIIQ 的 SpoIIE 定位有助于隔膜的稳定和分隔。","authors":"Behzad Dehghani, Christopher D A Rodrigues","doi":"10.1128/jb.00220-24","DOIUrl":null,"url":null,"abstract":"<p><p>During spore development in bacteria, a polar septum separates two transcriptionally distinct cellular compartments, the mother cell and the forespore. The conserved serine phosphatase SpoIIE is known for its critical role in the formation of this septum and activation of compartment-specific transcription in the forespore. Signaling between the mother cell and forespore then leads to activation of mother cell transcription and a phagocytic-like process called engulfment, which involves dramatic remodeling of the septum and requires a balance between peptidoglycan synthesis and hydrolysis to ensure septal stability and compartmentalization. Using <i>Bacillus subtilis</i>, we identify an additional role for SpoIIE in maintaining septal stability and compartmentalization at the onset of engulfment. This role for SpoIIE is mediated by SpoIIQ, which anchors SpoIIE in the engulfing membrane. A SpoIIQ mutant (SpoIIQ Y28A) that fails to anchor SpoIIE, results in septal instability and miscompartmentalization during septal peptidoglycan hydrolysis, when other septal stabilization factors are absent. Our data support a model whereby SpoIIE and its interactions with the peptidoglycan synthetic machinery contribute to the stabilization of the asymmetric septum early in engulfment, thereby ensuring compartmentalization during spore development.IMPORTANCEBacterial sporulation is a complex process involving a vast array of proteins. Some of these proteins are absolutely critical and regulate key points in the developmental process. Once such protein is SpoIIE, known for its role in the formation of the polar septum, a hallmark of the early stages of sporulation, and activation of the first sporulation-specific sigma factor, σF, in the developing spore. Interestingly, SpoIIE has been shown to interact with SpoIIQ, an important σF-regulated protein that functions during the engulfment stage. However, the significance of this interaction has remained unclear. Here, we unveil the importance of the SpoIIQ-SpoIIE interaction and identify a role for SpoIIE in the stabilization of the polar septum and maintenance of compartmentalization at the onset of engulfment. In this way, we demonstrate that key sporulation proteins, like SpoIIQ and SpoIIE, function in multiple processes during spore development.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0022024"},"PeriodicalIF":2.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270862/pdf/","citationCount":"0","resultStr":"{\"title\":\"SpoIIQ-dependent localization of SpoIIE contributes to septal stability and compartmentalization during the engulfment stage of <i>Bacillus subtilis</i> sporulation.\",\"authors\":\"Behzad Dehghani, Christopher D A Rodrigues\",\"doi\":\"10.1128/jb.00220-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During spore development in bacteria, a polar septum separates two transcriptionally distinct cellular compartments, the mother cell and the forespore. The conserved serine phosphatase SpoIIE is known for its critical role in the formation of this septum and activation of compartment-specific transcription in the forespore. Signaling between the mother cell and forespore then leads to activation of mother cell transcription and a phagocytic-like process called engulfment, which involves dramatic remodeling of the septum and requires a balance between peptidoglycan synthesis and hydrolysis to ensure septal stability and compartmentalization. Using <i>Bacillus subtilis</i>, we identify an additional role for SpoIIE in maintaining septal stability and compartmentalization at the onset of engulfment. This role for SpoIIE is mediated by SpoIIQ, which anchors SpoIIE in the engulfing membrane. A SpoIIQ mutant (SpoIIQ Y28A) that fails to anchor SpoIIE, results in septal instability and miscompartmentalization during septal peptidoglycan hydrolysis, when other septal stabilization factors are absent. Our data support a model whereby SpoIIE and its interactions with the peptidoglycan synthetic machinery contribute to the stabilization of the asymmetric septum early in engulfment, thereby ensuring compartmentalization during spore development.IMPORTANCEBacterial sporulation is a complex process involving a vast array of proteins. Some of these proteins are absolutely critical and regulate key points in the developmental process. Once such protein is SpoIIE, known for its role in the formation of the polar septum, a hallmark of the early stages of sporulation, and activation of the first sporulation-specific sigma factor, σF, in the developing spore. Interestingly, SpoIIE has been shown to interact with SpoIIQ, an important σF-regulated protein that functions during the engulfment stage. However, the significance of this interaction has remained unclear. Here, we unveil the importance of the SpoIIQ-SpoIIE interaction and identify a role for SpoIIE in the stabilization of the polar septum and maintenance of compartmentalization at the onset of engulfment. In this way, we demonstrate that key sporulation proteins, like SpoIIQ and SpoIIE, function in multiple processes during spore development.</p>\",\"PeriodicalId\":15107,\"journal\":{\"name\":\"Journal of Bacteriology\",\"volume\":\" \",\"pages\":\"e0022024\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/jb.00220-24\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00220-24","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在细菌的孢子发育过程中,极性隔膜将母细胞和前孢子这两个转录不同的细胞区隔开。已知保守的丝氨酸磷酸酶 SpoIIE 在形成极性隔膜和激活前孢子特异性转录中起着关键作用。母细胞和前核之间的信号传递随后会导致母细胞转录的激活和一种被称为吞噬的类似吞噬细胞的过程,这涉及到隔膜的急剧重塑,并需要肽聚糖合成和水解之间的平衡,以确保隔膜的稳定性和区隔化。我们利用枯草芽孢杆菌发现了 SpoIIE 在吞噬开始时维持隔膜稳定和分隔的额外作用。SpoIIE 的这一作用是由 SpoIIQ 介导的,它将 SpoIIE 固定在吞噬膜上。SpoIIQ 突变体(SpoIIQ Y28A)不能锚定 SpoIIE,导致隔膜不稳定,在隔膜肽聚糖水解过程中,当其他隔膜稳定因子缺失时,隔膜也会发生错室。我们的数据支持这样一种模型,即 SpoIIE 及其与肽聚糖合成机制的相互作用有助于在吞噬早期稳定不对称隔膜,从而确保孢子发育过程中的隔室化。其中一些蛋白质是绝对关键的,它们调节着发育过程中的关键点。SpoIIE 就是这样一种蛋白质,它在极性隔膜的形成(孢子形成早期阶段的标志)和激活发育中孢子的第一个孢子特异性σ因子 σF 中发挥着作用。有趣的是,SpoIIE 已被证明能与 SpoIIQ 相互作用,SpoIIQ 是一种由 σF 调节的重要蛋白质,在吞噬阶段发挥作用。然而,这种相互作用的意义仍不清楚。在这里,我们揭示了 SpoIIQ-SpoIIE 相互作用的重要性,并确定了 SpoIIE 在吞噬开始时稳定极性隔膜和维持区隔化的作用。通过这种方式,我们证明了关键的孢子蛋白(如 SpoIIQ 和 SpoIIE)在孢子发育过程中的多个过程中发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpoIIQ-dependent localization of SpoIIE contributes to septal stability and compartmentalization during the engulfment stage of Bacillus subtilis sporulation.

During spore development in bacteria, a polar septum separates two transcriptionally distinct cellular compartments, the mother cell and the forespore. The conserved serine phosphatase SpoIIE is known for its critical role in the formation of this septum and activation of compartment-specific transcription in the forespore. Signaling between the mother cell and forespore then leads to activation of mother cell transcription and a phagocytic-like process called engulfment, which involves dramatic remodeling of the septum and requires a balance between peptidoglycan synthesis and hydrolysis to ensure septal stability and compartmentalization. Using Bacillus subtilis, we identify an additional role for SpoIIE in maintaining septal stability and compartmentalization at the onset of engulfment. This role for SpoIIE is mediated by SpoIIQ, which anchors SpoIIE in the engulfing membrane. A SpoIIQ mutant (SpoIIQ Y28A) that fails to anchor SpoIIE, results in septal instability and miscompartmentalization during septal peptidoglycan hydrolysis, when other septal stabilization factors are absent. Our data support a model whereby SpoIIE and its interactions with the peptidoglycan synthetic machinery contribute to the stabilization of the asymmetric septum early in engulfment, thereby ensuring compartmentalization during spore development.IMPORTANCEBacterial sporulation is a complex process involving a vast array of proteins. Some of these proteins are absolutely critical and regulate key points in the developmental process. Once such protein is SpoIIE, known for its role in the formation of the polar septum, a hallmark of the early stages of sporulation, and activation of the first sporulation-specific sigma factor, σF, in the developing spore. Interestingly, SpoIIE has been shown to interact with SpoIIQ, an important σF-regulated protein that functions during the engulfment stage. However, the significance of this interaction has remained unclear. Here, we unveil the importance of the SpoIIQ-SpoIIE interaction and identify a role for SpoIIE in the stabilization of the polar septum and maintenance of compartmentalization at the onset of engulfment. In this way, we demonstrate that key sporulation proteins, like SpoIIQ and SpoIIE, function in multiple processes during spore development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology
Journal of Bacteriology 生物-微生物学
CiteScore
6.10
自引率
9.40%
发文量
324
审稿时长
1.3 months
期刊介绍: The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.
期刊最新文献
CodY controls the SaeR/S two-component system by modulating branched-chain fatty acid synthesis in Staphylococcus aureus. Impact of high-speed nanodroplets on various pathogenic bacterial cell walls. Vibrio cholerae: a fundamental model system for bacterial genetics and pathogenesis research. A flagellar accessory protein links chemotaxis to surface sensing. Combinatorial control of type IVa pili formation by the four polarized regulators MglA, SgmX, FrzS, and SopA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1