Xiaoqiong Guo, Chunli Wang, Qian Zhu, Wenhua Dongchen, Xiaoling Zhang, Wei Li, Hui Zhang, Cui Zhang, Zar Ni Naing Nant Nyein, Mengting Li, Lijuan Chen, Dongsun Lee
{"title":"白化致死 13 是水稻叶绿体发育所需的叶绿体输入蛋白。","authors":"Xiaoqiong Guo, Chunli Wang, Qian Zhu, Wenhua Dongchen, Xiaoling Zhang, Wei Li, Hui Zhang, Cui Zhang, Zar Ni Naing Nant Nyein, Mengting Li, Lijuan Chen, Dongsun Lee","doi":"10.1002/pld3.610","DOIUrl":null,"url":null,"abstract":"<p><p>Chloroplasts play a vital role in plant growth and development, which are the main sites of photosynthesis and the production of hormones and metabolites. Despite their significance, the regulatory mechanisms governing chloroplast development remain unclear. In our investigation, we identified a rice mutant with defective chloroplasts in rice (<i>Oryza sativa</i> L.), named albino lethal 13 (<i>osal13</i>), which displayed a distinct albino phenotype in leaves, ultimately resulting in seedling lethality. Molecular cloning revealed that <i>OsAL13</i> encodes a novel rice protein with no homologous gene or known conserved domain. This gene was located in the chloroplast and exhibited constitutive expression in various tissues, particularly in green tissues and regions of active cell growth. Our study's findings reveal that RNAi-mediated knockdown of <i>OsAL13</i> led to a pronounced albino phenotype, reduced chlorophyll and carotenoid contents, a vesicle chloroplast structure, and a decrease in the expression of chloroplast-associated genes. Consequently, the pollen fertility and seed setting rate were lower compared with the wild type. In contrast, the overexpression of <i>OsAL13</i> resulted in an increased photosynthetic rate, a higher total grain number per panicle, and enhanced levels of indole-3-acetic acid (IAA) in the roots and gibberellin A3 (GA3) in the shoot. These outcomes provide new insights on the role of <i>OsAL13</i> in regulating chloroplast development in rice.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"8 6","pages":"e610"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189691/pdf/","citationCount":"0","resultStr":"{\"title\":\"Albino lethal 13, a chloroplast-imported protein required for chloroplast development in rice.\",\"authors\":\"Xiaoqiong Guo, Chunli Wang, Qian Zhu, Wenhua Dongchen, Xiaoling Zhang, Wei Li, Hui Zhang, Cui Zhang, Zar Ni Naing Nant Nyein, Mengting Li, Lijuan Chen, Dongsun Lee\",\"doi\":\"10.1002/pld3.610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chloroplasts play a vital role in plant growth and development, which are the main sites of photosynthesis and the production of hormones and metabolites. Despite their significance, the regulatory mechanisms governing chloroplast development remain unclear. In our investigation, we identified a rice mutant with defective chloroplasts in rice (<i>Oryza sativa</i> L.), named albino lethal 13 (<i>osal13</i>), which displayed a distinct albino phenotype in leaves, ultimately resulting in seedling lethality. Molecular cloning revealed that <i>OsAL13</i> encodes a novel rice protein with no homologous gene or known conserved domain. This gene was located in the chloroplast and exhibited constitutive expression in various tissues, particularly in green tissues and regions of active cell growth. Our study's findings reveal that RNAi-mediated knockdown of <i>OsAL13</i> led to a pronounced albino phenotype, reduced chlorophyll and carotenoid contents, a vesicle chloroplast structure, and a decrease in the expression of chloroplast-associated genes. Consequently, the pollen fertility and seed setting rate were lower compared with the wild type. In contrast, the overexpression of <i>OsAL13</i> resulted in an increased photosynthetic rate, a higher total grain number per panicle, and enhanced levels of indole-3-acetic acid (IAA) in the roots and gibberellin A3 (GA3) in the shoot. These outcomes provide new insights on the role of <i>OsAL13</i> in regulating chloroplast development in rice.</p>\",\"PeriodicalId\":20230,\"journal\":{\"name\":\"Plant Direct\",\"volume\":\"8 6\",\"pages\":\"e610\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189691/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pld3.610\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.610","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Albino lethal 13, a chloroplast-imported protein required for chloroplast development in rice.
Chloroplasts play a vital role in plant growth and development, which are the main sites of photosynthesis and the production of hormones and metabolites. Despite their significance, the regulatory mechanisms governing chloroplast development remain unclear. In our investigation, we identified a rice mutant with defective chloroplasts in rice (Oryza sativa L.), named albino lethal 13 (osal13), which displayed a distinct albino phenotype in leaves, ultimately resulting in seedling lethality. Molecular cloning revealed that OsAL13 encodes a novel rice protein with no homologous gene or known conserved domain. This gene was located in the chloroplast and exhibited constitutive expression in various tissues, particularly in green tissues and regions of active cell growth. Our study's findings reveal that RNAi-mediated knockdown of OsAL13 led to a pronounced albino phenotype, reduced chlorophyll and carotenoid contents, a vesicle chloroplast structure, and a decrease in the expression of chloroplast-associated genes. Consequently, the pollen fertility and seed setting rate were lower compared with the wild type. In contrast, the overexpression of OsAL13 resulted in an increased photosynthetic rate, a higher total grain number per panicle, and enhanced levels of indole-3-acetic acid (IAA) in the roots and gibberellin A3 (GA3) in the shoot. These outcomes provide new insights on the role of OsAL13 in regulating chloroplast development in rice.
期刊介绍:
Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.