Hyeon-Mu Cho, Se-Hee Choe, Ja-Rang Lee, Hye-Ri Park, Min-Gyeong Ko, Yun-Jung Lee, Hwal-Yong Lee, Sung Hyun Park, Sang-Je Park, Young-Hyun Kim, Jae-Won Huh
{"title":"对猕猴整个生命周期的转录组分析揭示了与年龄相关的免疫模式。","authors":"Hyeon-Mu Cho, Se-Hee Choe, Ja-Rang Lee, Hye-Ri Park, Min-Gyeong Ko, Yun-Jung Lee, Hwal-Yong Lee, Sung Hyun Park, Sang-Je Park, Young-Hyun Kim, Jae-Won Huh","doi":"10.1038/s41514-024-00158-0","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the different perspectives by diverse research sectors spanning several decades, aging research remains uncharted territory for human beings. Therefore, we investigated the transcriptomic characteristics of eight male healthy cynomolgus macaques, and the annual sampling was designed with two individuals in four age groups. As a laboratory animal, the macaques were meticulously shielded from all environmental factors except aging. The results showed recent findings of certain immune response and the age-associated network of primate immunity. Three important aging patterns were identified and each gene clusters represented a different immune response. The increased expression pattern was predominantly associated with innate immune cells, such as Neutrophils and NK cells, causing chronic inflammation with aging whereas the other two decreased patterns were associated with adaptive immunity, especially \"B cell activation\" affecting antibody diversity of aging. Furthermore, the hub gene network of the patterns reflected transcriptomic age and correlated with human illness status, aiding in future human disease prediction. Our macaque transcriptome profiling results offer systematic insights into the age-related immunological features of primates.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"10 1","pages":"30"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189941/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcriptome analysis of cynomolgus macaques throughout their lifespan reveals age-related immune patterns.\",\"authors\":\"Hyeon-Mu Cho, Se-Hee Choe, Ja-Rang Lee, Hye-Ri Park, Min-Gyeong Ko, Yun-Jung Lee, Hwal-Yong Lee, Sung Hyun Park, Sang-Je Park, Young-Hyun Kim, Jae-Won Huh\",\"doi\":\"10.1038/s41514-024-00158-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the different perspectives by diverse research sectors spanning several decades, aging research remains uncharted territory for human beings. Therefore, we investigated the transcriptomic characteristics of eight male healthy cynomolgus macaques, and the annual sampling was designed with two individuals in four age groups. As a laboratory animal, the macaques were meticulously shielded from all environmental factors except aging. The results showed recent findings of certain immune response and the age-associated network of primate immunity. Three important aging patterns were identified and each gene clusters represented a different immune response. The increased expression pattern was predominantly associated with innate immune cells, such as Neutrophils and NK cells, causing chronic inflammation with aging whereas the other two decreased patterns were associated with adaptive immunity, especially \\\"B cell activation\\\" affecting antibody diversity of aging. Furthermore, the hub gene network of the patterns reflected transcriptomic age and correlated with human illness status, aiding in future human disease prediction. Our macaque transcriptome profiling results offer systematic insights into the age-related immunological features of primates.</p>\",\"PeriodicalId\":94160,\"journal\":{\"name\":\"npj aging\",\"volume\":\"10 1\",\"pages\":\"30\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189941/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41514-024-00158-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-024-00158-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
尽管几十年来不同研究领域提出了不同的观点,但对于人类来说,衰老研究仍然是一个未知领域。因此,我们研究了八只雄性健康猕猴的转录组特征,每年取样两次,分为四个年龄组。作为实验动物,猕猴被严格控制在除衰老以外的所有环境因素之外。研究结果显示了某些免疫反应和与年龄相关的灵长类免疫网络的最新发现。研究发现了三种重要的衰老模式,每个基因簇代表了不同的免疫反应。表达增加的模式主要与先天性免疫细胞(如中性粒细胞和 NK 细胞)有关,会随着年龄的增长导致慢性炎症;而另外两种表达减少的模式则与适应性免疫有关,尤其是 "B 细胞活化 "会影响衰老过程中的抗体多样性。此外,这些模式的中枢基因网络反映了转录组年龄,并与人类疾病状况相关,有助于未来人类疾病的预测。我们的猕猴转录组分析结果为灵长类动物与年龄相关的免疫学特征提供了系统的见解。
Transcriptome analysis of cynomolgus macaques throughout their lifespan reveals age-related immune patterns.
Despite the different perspectives by diverse research sectors spanning several decades, aging research remains uncharted territory for human beings. Therefore, we investigated the transcriptomic characteristics of eight male healthy cynomolgus macaques, and the annual sampling was designed with two individuals in four age groups. As a laboratory animal, the macaques were meticulously shielded from all environmental factors except aging. The results showed recent findings of certain immune response and the age-associated network of primate immunity. Three important aging patterns were identified and each gene clusters represented a different immune response. The increased expression pattern was predominantly associated with innate immune cells, such as Neutrophils and NK cells, causing chronic inflammation with aging whereas the other two decreased patterns were associated with adaptive immunity, especially "B cell activation" affecting antibody diversity of aging. Furthermore, the hub gene network of the patterns reflected transcriptomic age and correlated with human illness status, aiding in future human disease prediction. Our macaque transcriptome profiling results offer systematic insights into the age-related immunological features of primates.