分区流固相互作用的非侵入式降阶模型

IF 3.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL Journal of Fluids and Structures Pub Date : 2024-06-20 DOI:10.1016/j.jfluidstructs.2024.104156
Tiba Azzeddine , Dairay Thibault , De Vuyst Florian , Mortazavi Iraj , Berro Ramirez Juan-Pedro
{"title":"分区流固相互作用的非侵入式降阶模型","authors":"Tiba Azzeddine ,&nbsp;Dairay Thibault ,&nbsp;De Vuyst Florian ,&nbsp;Mortazavi Iraj ,&nbsp;Berro Ramirez Juan-Pedro","doi":"10.1016/j.jfluidstructs.2024.104156","DOIUrl":null,"url":null,"abstract":"<div><p>The main goal of this work is to develop a data-driven Reduced Order Model (ROM) strategy from high-fidelity simulation result data of a Full Order Model (FOM). The goal is to predict at lower computational cost the time evolution of solutions of Fluid–Structure Interaction (FSI) problems. For some FSI applications, the elastic solid FOM (often chosen as quasi-static) can take far more computational time than the fluid one. In this context, for the sake of performance one could only derive a ROM for the structure and try to achieve a partitioned FOM fluid solver coupled with a ROM solid one. In this paper, we present a data-driven partitioned ROM on two study cases: (i) a simplified 1D-1D FSI problem representing an axisymmetric elastic model of an arterial vessel, coupled with an incompressible fluid flow; (ii) an incompressible <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span> wake flow over a cylinder facing an elastic solid with two flaps. We evaluate the accuracy and performance of the proposed ROM-FOM strategy on these cases while investigating the effects of the model’s hyperparameters. We demonstrate a high prediction accuracy and significant speedup achievements using this strategy.</p></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-intrusive reduced order models for partitioned fluid–structure interactions\",\"authors\":\"Tiba Azzeddine ,&nbsp;Dairay Thibault ,&nbsp;De Vuyst Florian ,&nbsp;Mortazavi Iraj ,&nbsp;Berro Ramirez Juan-Pedro\",\"doi\":\"10.1016/j.jfluidstructs.2024.104156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main goal of this work is to develop a data-driven Reduced Order Model (ROM) strategy from high-fidelity simulation result data of a Full Order Model (FOM). The goal is to predict at lower computational cost the time evolution of solutions of Fluid–Structure Interaction (FSI) problems. For some FSI applications, the elastic solid FOM (often chosen as quasi-static) can take far more computational time than the fluid one. In this context, for the sake of performance one could only derive a ROM for the structure and try to achieve a partitioned FOM fluid solver coupled with a ROM solid one. In this paper, we present a data-driven partitioned ROM on two study cases: (i) a simplified 1D-1D FSI problem representing an axisymmetric elastic model of an arterial vessel, coupled with an incompressible fluid flow; (ii) an incompressible <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span> wake flow over a cylinder facing an elastic solid with two flaps. We evaluate the accuracy and performance of the proposed ROM-FOM strategy on these cases while investigating the effects of the model’s hyperparameters. We demonstrate a high prediction accuracy and significant speedup achievements using this strategy.</p></div>\",\"PeriodicalId\":54834,\"journal\":{\"name\":\"Journal of Fluids and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0889974624000914\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624000914","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的主要目标是根据全阶模型(FOM)的高保真模拟结果数据,开发一种数据驱动的降阶模型(ROM)策略。目标是以较低的计算成本预测流固耦合(FSI)问题解决方案的时间演化。在某些 FSI 应用中,弹性固体 FOM(通常选择准静态 FOM)所需的计算时间远远超过流体 FOM。在这种情况下,为了提高性能,我们只能推导出结构的 ROM,并尝试实现分区 FOM 流体求解器与 ROM 固体求解器的耦合。在本文中,我们针对两个研究案例提出了数据驱动的分区 ROM:(i) 一个简化的 1D-1D FSI 问题,代表动脉血管的轴对称弹性模型,与不可压缩流体流耦合;(ii) 一个不可压缩的 2D 尾流,流过一个面对两个瓣的弹性固体的圆柱体。我们评估了所提出的 ROM-FOM 策略在这些情况下的准确性和性能,同时研究了模型超参数的影响。我们证明了使用该策略可以获得很高的预测精度和显著的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-intrusive reduced order models for partitioned fluid–structure interactions

The main goal of this work is to develop a data-driven Reduced Order Model (ROM) strategy from high-fidelity simulation result data of a Full Order Model (FOM). The goal is to predict at lower computational cost the time evolution of solutions of Fluid–Structure Interaction (FSI) problems. For some FSI applications, the elastic solid FOM (often chosen as quasi-static) can take far more computational time than the fluid one. In this context, for the sake of performance one could only derive a ROM for the structure and try to achieve a partitioned FOM fluid solver coupled with a ROM solid one. In this paper, we present a data-driven partitioned ROM on two study cases: (i) a simplified 1D-1D FSI problem representing an axisymmetric elastic model of an arterial vessel, coupled with an incompressible fluid flow; (ii) an incompressible 2D wake flow over a cylinder facing an elastic solid with two flaps. We evaluate the accuracy and performance of the proposed ROM-FOM strategy on these cases while investigating the effects of the model’s hyperparameters. We demonstrate a high prediction accuracy and significant speedup achievements using this strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fluids and Structures
Journal of Fluids and Structures 工程技术-工程:机械
CiteScore
6.90
自引率
8.30%
发文量
173
审稿时长
65 days
期刊介绍: The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved. The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.
期刊最新文献
A new approach for spatio-temporal interface treatment in fluid–solid interaction using artificial neural networks employing coupled partitioned fluid–solid solvers Condensation solution method for fluid-structure interaction dynamic models of structural system Turbulence-induced vibration in annular flow of a rigid cylinder mounted on a cantilever beam Recurrent graph convolutional multi-mesh autoencoder for unsteady transonic aerodynamics On the characteristics of fluid flow field and oscillatory response of tuned liquid multi-column dampers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1