从计算机断层扫描中自动分割肝脏肿瘤

R.V. Manjunath , Yashaswini Gowda N
{"title":"从计算机断层扫描中自动分割肝脏肿瘤","authors":"R.V. Manjunath ,&nbsp;Yashaswini Gowda N","doi":"10.1016/j.liver.2024.100232","DOIUrl":null,"url":null,"abstract":"<div><p>The precision of liver tumor segmentation heavily depends on the doctor's expertise, hence it is required to produce an algorithm for automatic liver tumor segmentation to reduce the manual intervention in assessing liver disease identification. We propose a CNN-based UNet architecture designed to segment liver tumors from CT images of size 128×128. In this model, modifications were made to the encoder, decoder, and bridge paths to enhance feature extraction efficiency. The performance of the modified UNet was evaluated against an existing segmentation method using the same CT image size. The comparison focused on the Dice similarity coefficient and accuracy. Our proposed method demonstrated a high Dice similarity coefficient of 75.37 % and an accuracy of 99.75 % on the 3Dircadb dataset. These results indicate that our modified UNet achieved superior segmentation metrics compared to state-of-the-art methods, showcasing its effectiveness in liver tumor segmentation.</p></div>","PeriodicalId":100799,"journal":{"name":"Journal of Liver Transplantation","volume":"15 ","pages":"Article 100232"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666967624000333/pdfft?md5=f4c5eea1b8e1306ce82e2e5d4e0ff7cd&pid=1-s2.0-S2666967624000333-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated segmentation of liver tumors from computed tomographic scans\",\"authors\":\"R.V. Manjunath ,&nbsp;Yashaswini Gowda N\",\"doi\":\"10.1016/j.liver.2024.100232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The precision of liver tumor segmentation heavily depends on the doctor's expertise, hence it is required to produce an algorithm for automatic liver tumor segmentation to reduce the manual intervention in assessing liver disease identification. We propose a CNN-based UNet architecture designed to segment liver tumors from CT images of size 128×128. In this model, modifications were made to the encoder, decoder, and bridge paths to enhance feature extraction efficiency. The performance of the modified UNet was evaluated against an existing segmentation method using the same CT image size. The comparison focused on the Dice similarity coefficient and accuracy. Our proposed method demonstrated a high Dice similarity coefficient of 75.37 % and an accuracy of 99.75 % on the 3Dircadb dataset. These results indicate that our modified UNet achieved superior segmentation metrics compared to state-of-the-art methods, showcasing its effectiveness in liver tumor segmentation.</p></div>\",\"PeriodicalId\":100799,\"journal\":{\"name\":\"Journal of Liver Transplantation\",\"volume\":\"15 \",\"pages\":\"Article 100232\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666967624000333/pdfft?md5=f4c5eea1b8e1306ce82e2e5d4e0ff7cd&pid=1-s2.0-S2666967624000333-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Liver Transplantation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666967624000333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liver Transplantation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666967624000333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肝脏肿瘤分割的精确度在很大程度上取决于医生的专业知识,因此需要开发一种自动肝脏肿瘤分割算法,以减少人工干预肝病鉴定评估的工作量。我们提出了一种基于 CNN 的 UNet 架构,旨在从大小为 128×128 的 CT 图像中分割肝脏肿瘤。在该模型中,对编码器、解码器和桥接路径进行了修改,以提高特征提取效率。在使用相同大小的 CT 图像时,对修改后的 UNet 的性能与现有的分割方法进行了评估。比较的重点是 Dice 相似性系数和准确性。我们提出的方法在 3Dircadb 数据集上的 Dice 相似系数高达 75.37%,准确率为 99.75%。这些结果表明,与最先进的方法相比,我们改进的 UNet 实现了更优越的分割指标,展示了其在肝脏肿瘤分割中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated segmentation of liver tumors from computed tomographic scans

The precision of liver tumor segmentation heavily depends on the doctor's expertise, hence it is required to produce an algorithm for automatic liver tumor segmentation to reduce the manual intervention in assessing liver disease identification. We propose a CNN-based UNet architecture designed to segment liver tumors from CT images of size 128×128. In this model, modifications were made to the encoder, decoder, and bridge paths to enhance feature extraction efficiency. The performance of the modified UNet was evaluated against an existing segmentation method using the same CT image size. The comparison focused on the Dice similarity coefficient and accuracy. Our proposed method demonstrated a high Dice similarity coefficient of 75.37 % and an accuracy of 99.75 % on the 3Dircadb dataset. These results indicate that our modified UNet achieved superior segmentation metrics compared to state-of-the-art methods, showcasing its effectiveness in liver tumor segmentation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular evidence of solitary lung metastasis as the initial recurrence of hepatocellular carcinoma a decade more after liver transplantation Incidental hepatocellular carcinoma in explanted livers: Prevalence, prognosis and features Editorial board Contents Immunotherapy in liver transplantation for hepatocellular carcinoma: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1