{"title":"微海绵:延长释放时间的前景广阔的前沿领域--当前观点和专利","authors":"N. Srinatha, Sowjanya Battu, B. A. Vishwanath","doi":"10.1186/s43088-024-00519-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Microsponges are one of the advanced drug delivery systems that facilitates precise and controlled release of active ingredients that are suitable for topical and oral use. These porous microspheres are typically sized between 5 and 300 μm, offer benefits including controlled release, stability, and minimized side effects. Manufacturing techniques like quasi-emulsion solvent diffusion and liquid–liquid suspension polymerization are usually employed to prepare microsponges, although various challenges arise from the use of potentially hazardous organic solvents.</p><h3>Main body</h3><p>Microsponges possess distinct traits such as extended drug release, formulation flexibility, and high drug loading capacity. Entrapment of drugs requires considerations of solubility, stability, and miscibility, while evaluation methods encompass production yield and particle size analysis. Their applications range from dermatological to biopharmaceutical delivery, with diverse products utilizing this technology. Ongoing innovations about microsponges are evident in patents concerning medical dressings and hyaluronic acid delivery systems.</p><h3>Conclusion</h3><p>Microsponges present a promising avenue in drug delivery, despite many challenges. Current review addresses on limitations and diverse products highlighting commercial viability. Patent activity signifies continued interest, suggesting significant potential for enhancing patient care.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00519-4","citationCount":"0","resultStr":"{\"title\":\"Microsponges: a promising frontier for prolonged release-current perspectives and patents\",\"authors\":\"N. Srinatha, Sowjanya Battu, B. A. Vishwanath\",\"doi\":\"10.1186/s43088-024-00519-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Microsponges are one of the advanced drug delivery systems that facilitates precise and controlled release of active ingredients that are suitable for topical and oral use. These porous microspheres are typically sized between 5 and 300 μm, offer benefits including controlled release, stability, and minimized side effects. Manufacturing techniques like quasi-emulsion solvent diffusion and liquid–liquid suspension polymerization are usually employed to prepare microsponges, although various challenges arise from the use of potentially hazardous organic solvents.</p><h3>Main body</h3><p>Microsponges possess distinct traits such as extended drug release, formulation flexibility, and high drug loading capacity. Entrapment of drugs requires considerations of solubility, stability, and miscibility, while evaluation methods encompass production yield and particle size analysis. Their applications range from dermatological to biopharmaceutical delivery, with diverse products utilizing this technology. Ongoing innovations about microsponges are evident in patents concerning medical dressings and hyaluronic acid delivery systems.</p><h3>Conclusion</h3><p>Microsponges present a promising avenue in drug delivery, despite many challenges. Current review addresses on limitations and diverse products highlighting commercial viability. Patent activity signifies continued interest, suggesting significant potential for enhancing patient care.</p></div>\",\"PeriodicalId\":481,\"journal\":{\"name\":\"Beni-Suef University Journal of Basic and Applied Sciences\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00519-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beni-Suef University Journal of Basic and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s43088-024-00519-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-024-00519-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Microsponges: a promising frontier for prolonged release-current perspectives and patents
Background
Microsponges are one of the advanced drug delivery systems that facilitates precise and controlled release of active ingredients that are suitable for topical and oral use. These porous microspheres are typically sized between 5 and 300 μm, offer benefits including controlled release, stability, and minimized side effects. Manufacturing techniques like quasi-emulsion solvent diffusion and liquid–liquid suspension polymerization are usually employed to prepare microsponges, although various challenges arise from the use of potentially hazardous organic solvents.
Main body
Microsponges possess distinct traits such as extended drug release, formulation flexibility, and high drug loading capacity. Entrapment of drugs requires considerations of solubility, stability, and miscibility, while evaluation methods encompass production yield and particle size analysis. Their applications range from dermatological to biopharmaceutical delivery, with diverse products utilizing this technology. Ongoing innovations about microsponges are evident in patents concerning medical dressings and hyaluronic acid delivery systems.
Conclusion
Microsponges present a promising avenue in drug delivery, despite many challenges. Current review addresses on limitations and diverse products highlighting commercial viability. Patent activity signifies continued interest, suggesting significant potential for enhancing patient care.
期刊介绍:
Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.