Yunje Cho, Junghee Cho, Jonghyeok Park, Jeonghyun Wang, Seunggyo Jeong, Jubok Lee, Yun Hwang, Jiwoong Kim, Jeongwoo Yu, Heesu Chung, Hyenok Park, Subong Shon, Taeyong Jo, Myungjun Lee, Kwangrak Kim
{"title":"基于电子束核估计的扫描电子显微镜自动光束优化方法","authors":"Yunje Cho, Junghee Cho, Jonghyeok Park, Jeonghyun Wang, Seunggyo Jeong, Jubok Lee, Yun Hwang, Jiwoong Kim, Jeongwoo Yu, Heesu Chung, Hyenok Park, Subong Shon, Taeyong Jo, Myungjun Lee, Kwangrak Kim","doi":"10.1038/s44172-024-00230-3","DOIUrl":null,"url":null,"abstract":"Scanning Electron Microscopy (SEM) leverages electron wavelengths for nanoscale imaging, necessitating precise parameter adjustments like focus, stigmator, and aperture alignment. However, traditional methods depend on skilled personnel and are time-consuming. Existing auto-focus and auto-stigmation techniques face challenges due to interdependent nature of these parameters and sample diversity. We propose a beam kernel estimation method to independently optimize SEM parameters, regardless of sample variations. Our approach untangles parameter influences, enabling concurrent optimization of focus, stigmator x, y, and aperture-align x, y. It achieves robust performance, with average errors of 1.00 μm for focus, 0.30% for stigmators, and 0.79% for aperture alignment, surpassing sharpness-based approach with its average errors of 6.42 μm for focus and 2.32% for stigmators and lacking in aperture-align capabilities. Our approach addresses SEM parameter interplay via blind deconvolution, facilitating rapid and automated optimization, thereby enhancing precision, efficiency, and applicability across scientific and industrial domains. Yunje Cho and colleagues improve the resolution of scanning electron microscopes via high-precision auto-focus and auto-stigmation. Their method operates without pre-existing knowledge about the sample.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-15"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00230-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Automatic beam optimization method for scanning electron microscopy based on electron beam Kernel estimation\",\"authors\":\"Yunje Cho, Junghee Cho, Jonghyeok Park, Jeonghyun Wang, Seunggyo Jeong, Jubok Lee, Yun Hwang, Jiwoong Kim, Jeongwoo Yu, Heesu Chung, Hyenok Park, Subong Shon, Taeyong Jo, Myungjun Lee, Kwangrak Kim\",\"doi\":\"10.1038/s44172-024-00230-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scanning Electron Microscopy (SEM) leverages electron wavelengths for nanoscale imaging, necessitating precise parameter adjustments like focus, stigmator, and aperture alignment. However, traditional methods depend on skilled personnel and are time-consuming. Existing auto-focus and auto-stigmation techniques face challenges due to interdependent nature of these parameters and sample diversity. We propose a beam kernel estimation method to independently optimize SEM parameters, regardless of sample variations. Our approach untangles parameter influences, enabling concurrent optimization of focus, stigmator x, y, and aperture-align x, y. It achieves robust performance, with average errors of 1.00 μm for focus, 0.30% for stigmators, and 0.79% for aperture alignment, surpassing sharpness-based approach with its average errors of 6.42 μm for focus and 2.32% for stigmators and lacking in aperture-align capabilities. Our approach addresses SEM parameter interplay via blind deconvolution, facilitating rapid and automated optimization, thereby enhancing precision, efficiency, and applicability across scientific and industrial domains. Yunje Cho and colleagues improve the resolution of scanning electron microscopes via high-precision auto-focus and auto-stigmation. Their method operates without pre-existing knowledge about the sample.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00230-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00230-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00230-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
扫描电子显微镜(SEM)利用电子波长进行纳米级成像,需要对聚焦、定焦器和光圈对准等参数进行精确调整。然而,传统方法依赖于技术熟练的人员,而且耗费时间。现有的自动聚焦和自动定焦技术由于这些参数的相互依赖性和样品的多样性而面临挑战。我们提出了一种光束核估计方法,可独立优化扫描电子显微镜参数,而不受样本变化的影响。该方法性能稳健,聚焦平均误差为 1.00 μm,定影平均误差为 0.30%,光圈对准平均误差为 0.79%,超过了基于锐度的方法(聚焦平均误差为 6.42 μm,定影平均误差为 2.32%,缺乏光圈对准功能)。我们的方法通过盲解卷积解决了扫描电子显微镜参数之间的相互作用,促进了快速和自动优化,从而提高了精度、效率以及在科学和工业领域的适用性。Yunje Cho 及其同事通过高精度自动聚焦和自动散焦提高了扫描电子显微镜的分辨率。他们的方法无需预先了解样品即可运行。
Automatic beam optimization method for scanning electron microscopy based on electron beam Kernel estimation
Scanning Electron Microscopy (SEM) leverages electron wavelengths for nanoscale imaging, necessitating precise parameter adjustments like focus, stigmator, and aperture alignment. However, traditional methods depend on skilled personnel and are time-consuming. Existing auto-focus and auto-stigmation techniques face challenges due to interdependent nature of these parameters and sample diversity. We propose a beam kernel estimation method to independently optimize SEM parameters, regardless of sample variations. Our approach untangles parameter influences, enabling concurrent optimization of focus, stigmator x, y, and aperture-align x, y. It achieves robust performance, with average errors of 1.00 μm for focus, 0.30% for stigmators, and 0.79% for aperture alignment, surpassing sharpness-based approach with its average errors of 6.42 μm for focus and 2.32% for stigmators and lacking in aperture-align capabilities. Our approach addresses SEM parameter interplay via blind deconvolution, facilitating rapid and automated optimization, thereby enhancing precision, efficiency, and applicability across scientific and industrial domains. Yunje Cho and colleagues improve the resolution of scanning electron microscopes via high-precision auto-focus and auto-stigmation. Their method operates without pre-existing knowledge about the sample.