利用量子机器学习和语言建模设计复杂的浓缩合金

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-10-02 DOI:10.1016/j.matt.2024.05.035
{"title":"利用量子机器学习和语言建模设计复杂的浓缩合金","authors":"","doi":"10.1016/j.matt.2024.05.035","DOIUrl":null,"url":null,"abstract":"<div><div><span>Designing novel complex concentrated alloys (CCAs) is an essential topic in materials science. However, due to the complicated high-dimensional component-property relationship, tuning material properties by researchers’ experience is challenging, even when guided by physical or empirical rules. Here, we adopt quantum computing (QC) technology and machine learning models to provide a proof-of-concept application of QC in physical metallurgy. We propose a quantum support vector machine (QSVM) model to predict single-phase CCAs. We show that fine-tuned quantum kernels with entanglement deliver promising performance, with a maximum accuracy of 89.4%. The QSVM model is then used to identify 1,741 lightweight CCAs jointly with a new text-mining-based method. Meanwhile, we devise a controllable approach to study the effect of noise on model performance and find that the noise level needs to be minimized for high-performance QSVM models. This study provides a practical and general approach to designing CCAs based on </span>quantum technologies.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3433-3446"},"PeriodicalIF":17.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing complex concentrated alloys with quantum machine learning and language modeling\",\"authors\":\"\",\"doi\":\"10.1016/j.matt.2024.05.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>Designing novel complex concentrated alloys (CCAs) is an essential topic in materials science. However, due to the complicated high-dimensional component-property relationship, tuning material properties by researchers’ experience is challenging, even when guided by physical or empirical rules. Here, we adopt quantum computing (QC) technology and machine learning models to provide a proof-of-concept application of QC in physical metallurgy. We propose a quantum support vector machine (QSVM) model to predict single-phase CCAs. We show that fine-tuned quantum kernels with entanglement deliver promising performance, with a maximum accuracy of 89.4%. The QSVM model is then used to identify 1,741 lightweight CCAs jointly with a new text-mining-based method. Meanwhile, we devise a controllable approach to study the effect of noise on model performance and find that the noise level needs to be minimized for high-performance QSVM models. This study provides a practical and general approach to designing CCAs based on </span>quantum technologies.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"7 10\",\"pages\":\"Pages 3433-3446\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524002601\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524002601","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计新型复杂浓缩合金(CCA)是材料科学的一个重要课题。然而,由于复杂的高维成分-属性关系,即使在物理或经验规则的指导下,根据研究人员的经验调整材料属性也是一项挑战。在此,我们采用量子计算(QC)技术和机器学习模型,在物理冶金学中提供量子计算的概念验证应用。我们提出了一种量子支持向量机(QSVM)模型来预测单相 CCA。我们的研究表明,带有纠缠的微调量子内核具有良好的性能,最高准确率可达 89.4%。然后,QSVM 模型与一种基于文本挖掘的新方法联合用于识别 1741 个轻量级 CCA。同时,我们设计了一种可控方法来研究噪声对模型性能的影响,并发现要想获得高性能的 QSVM 模型,需要将噪声水平降到最低。这项研究为设计基于量子技术的 CCA 提供了一种实用的通用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing complex concentrated alloys with quantum machine learning and language modeling
Designing novel complex concentrated alloys (CCAs) is an essential topic in materials science. However, due to the complicated high-dimensional component-property relationship, tuning material properties by researchers’ experience is challenging, even when guided by physical or empirical rules. Here, we adopt quantum computing (QC) technology and machine learning models to provide a proof-of-concept application of QC in physical metallurgy. We propose a quantum support vector machine (QSVM) model to predict single-phase CCAs. We show that fine-tuned quantum kernels with entanglement deliver promising performance, with a maximum accuracy of 89.4%. The QSVM model is then used to identify 1,741 lightweight CCAs jointly with a new text-mining-based method. Meanwhile, we devise a controllable approach to study the effect of noise on model performance and find that the noise level needs to be minimized for high-performance QSVM models. This study provides a practical and general approach to designing CCAs based on quantum technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
A ferroelectric living interface for fine-tuned exosome secretion toward physiology-mimetic neurovascular remodeling Biomimetic artificial neuromuscular fiber bundles with built-in adaptive feedback Massively multiplexed optical recording with polychromatic DNA frameworks Polyfunctional eutectogels with multiple hydrogen-bond-shielded amorphous networks for soft ionotronics Brilliant colorful daytime radiative cooling coating mimicking scarab beetle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1