多孔介质三维数字图像中流动和传输的孔隙网络-连续混合建模框架

IF 4 2区 环境科学与生态学 Q1 WATER RESOURCES Advances in Water Resources Pub Date : 2024-06-18 DOI:10.1016/j.advwatres.2024.104753
Li Zhang , Bo Guo , Chaozhong Qin , Yongqiang Xiong
{"title":"多孔介质三维数字图像中流动和传输的孔隙网络-连续混合建模框架","authors":"Li Zhang ,&nbsp;Bo Guo ,&nbsp;Chaozhong Qin ,&nbsp;Yongqiang Xiong","doi":"10.1016/j.advwatres.2024.104753","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding flow and transport in multiscale porous media is challenging due to the presence of a wide range of pore sizes. Recent imaging advances offer high-resolution characterization of the multiscale pore structures. However, simulating flow and transport in 3D digital images requires models to represent both the resolved and sub-resolution pore structures. We develop a hybrid pore-network-continuum modeling framework. The hybrid framework treats the smaller pores below the image resolution as a continuum using the Darcy-scale formalism and explicitly represents the larger pores resolved in the images employing a pore network model. We validate the hybrid model against direct numerical simulations for single-phase flow and solute transport and further demonstrate its applicability for simulating two-component gas transport in a shale rock sample. The results indicate that the new hybrid model represents the flow and transport process in multiscale porous media while being much more computationally efficient than direct numerical simulation methods for the range of simulated conditions.</p></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"190 ","pages":"Article 104753"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid pore-network-continuum modeling framework for flow and transport in 3D digital images of porous media\",\"authors\":\"Li Zhang ,&nbsp;Bo Guo ,&nbsp;Chaozhong Qin ,&nbsp;Yongqiang Xiong\",\"doi\":\"10.1016/j.advwatres.2024.104753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding flow and transport in multiscale porous media is challenging due to the presence of a wide range of pore sizes. Recent imaging advances offer high-resolution characterization of the multiscale pore structures. However, simulating flow and transport in 3D digital images requires models to represent both the resolved and sub-resolution pore structures. We develop a hybrid pore-network-continuum modeling framework. The hybrid framework treats the smaller pores below the image resolution as a continuum using the Darcy-scale formalism and explicitly represents the larger pores resolved in the images employing a pore network model. We validate the hybrid model against direct numerical simulations for single-phase flow and solute transport and further demonstrate its applicability for simulating two-component gas transport in a shale rock sample. The results indicate that the new hybrid model represents the flow and transport process in multiscale porous media while being much more computationally efficient than direct numerical simulation methods for the range of simulated conditions.</p></div>\",\"PeriodicalId\":7614,\"journal\":{\"name\":\"Advances in Water Resources\",\"volume\":\"190 \",\"pages\":\"Article 104753\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Water Resources\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0309170824001404\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824001404","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

由于存在多种孔隙大小,了解多尺度多孔介质中的流动和传输具有挑战性。最新的成像技术可对多尺度孔隙结构进行高分辨率表征。然而,要模拟三维数字图像中的流动和传输,需要建立模型来表示分辨率和亚分辨率孔隙结构。我们开发了一种孔隙-网络-真空混合建模框架。该混合框架使用达西尺度形式将图像分辨率以下的较小孔隙视为连续体,并使用孔隙网络模型明确表示图像中解析的较大孔隙。我们通过对单相流和溶质迁移的直接数值模拟验证了混合模型,并进一步证明了该模型适用于模拟页岩样本中的双组分气体迁移。结果表明,新的混合模型代表了多尺度多孔介质中的流动和传输过程,同时在模拟条件范围内,其计算效率远远高于直接数值模拟方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid pore-network-continuum modeling framework for flow and transport in 3D digital images of porous media

Understanding flow and transport in multiscale porous media is challenging due to the presence of a wide range of pore sizes. Recent imaging advances offer high-resolution characterization of the multiscale pore structures. However, simulating flow and transport in 3D digital images requires models to represent both the resolved and sub-resolution pore structures. We develop a hybrid pore-network-continuum modeling framework. The hybrid framework treats the smaller pores below the image resolution as a continuum using the Darcy-scale formalism and explicitly represents the larger pores resolved in the images employing a pore network model. We validate the hybrid model against direct numerical simulations for single-phase flow and solute transport and further demonstrate its applicability for simulating two-component gas transport in a shale rock sample. The results indicate that the new hybrid model represents the flow and transport process in multiscale porous media while being much more computationally efficient than direct numerical simulation methods for the range of simulated conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Water Resources
Advances in Water Resources 环境科学-水资源
CiteScore
9.40
自引率
6.40%
发文量
171
审稿时长
36 days
期刊介绍: Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources. Examples of appropriate topical areas that will be considered include the following: • Surface and subsurface hydrology • Hydrometeorology • Environmental fluid dynamics • Ecohydrology and ecohydrodynamics • Multiphase transport phenomena in porous media • Fluid flow and species transport and reaction processes
期刊最新文献
A training trajectory random walk model for upscaling colloid transport under favorable and unfavorable conditions On the modeling of the foam dynamics in heterogeneous porous media Corrigendum to “Investigating Steady Unconfined Groundwater Flow using Physics Informed Neural Networks” [Advances in Water Resources Volume 177 (2023), 104445] Investigating solute transport and reaction using a mechanistically coupled geochemical and geophysical modeling approach A computationally efficient hybrid neural network architecture for porous media: Integrating convolutional and graph neural networks for improved property predictions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1