高尿酸血症中的肠道微生物群失调通过激活 NLRP3 炎症小体促进肾损伤。

IF 13.8 1区 生物学 Q1 MICROBIOLOGY Microbiome Pub Date : 2024-06-21 DOI:10.1186/s40168-024-01826-9
Xinghong Zhou, Shuai Ji, Liqian Chen, Xiaoyu Liu, Yijian Deng, Yanting You, Ming Wang, Qiuxing He, Baizhao Peng, Ying Yang, Xiaohu Chen, Hiu Yee Kwan, Lin Zhou, Jieyu Chen, Xiaoshan Zhao
{"title":"高尿酸血症中的肠道微生物群失调通过激活 NLRP3 炎症小体促进肾损伤。","authors":"Xinghong Zhou, Shuai Ji, Liqian Chen, Xiaoyu Liu, Yijian Deng, Yanting You, Ming Wang, Qiuxing He, Baizhao Peng, Ying Yang, Xiaohu Chen, Hiu Yee Kwan, Lin Zhou, Jieyu Chen, Xiaoshan Zhao","doi":"10.1186/s40168-024-01826-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The prevalence of hyperuricaemia (HUA), a metabolic disorder characterized by elevated levels of uric acid, is on the rise and is frequently associated with renal injury. Gut microbiota and gut-derived uremic toxins are critical mediators in the gut-kidney axis that can cause damage to kidney function. Gut dysbiosis has been implicated in various kidney diseases. However, the role and underlying mechanism of the gut microbiota in HUA-induced renal injury remain unknown.</p><p><strong>Results: </strong>A HUA rat model was first established by knocking out the uricase (UOX). HUA rats exhibited apparent renal dysfunction, renal tubular injury, fibrosis, NLRP3 inflammasome activation, and impaired intestinal barrier functions. Analysis of 16S rRNA sequencing and functional prediction data revealed an abnormal gut microbiota profile and activation of pathways associated with uremic toxin production. A metabolomic analysis showed evident accumulation of gut-derived uremic toxins in the kidneys of HUA rats. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the effects of HUA-induced gut dysbiosis on renal injury. Mice recolonized with HUA microbiota exhibited severe renal injury and impaired intestinal barrier functions following renal ischemia/reperfusion (I/R) surgery. Notably, in NLRP3-knockout (NLRP3<sup>-/-</sup>) I/R mice, the deleterious effects of the HUA microbiota on renal injury and the intestinal barrier were eliminated.</p><p><strong>Conclusion: </strong>Our results demonstrate that HUA-induced gut dysbiosis contributes to the development of renal injury, possibly by promoting the production of gut-derived uremic toxins and subsequently activating the NLRP3 inflammasome. Our data suggest a potential therapeutic strategy for the treatment of renal diseases by targeting the gut microbiota and the NLRP3 inflammasome. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":null,"pages":null},"PeriodicalIF":13.8000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191305/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gut microbiota dysbiosis in hyperuricaemia promotes renal injury through the activation of NLRP3 inflammasome.\",\"authors\":\"Xinghong Zhou, Shuai Ji, Liqian Chen, Xiaoyu Liu, Yijian Deng, Yanting You, Ming Wang, Qiuxing He, Baizhao Peng, Ying Yang, Xiaohu Chen, Hiu Yee Kwan, Lin Zhou, Jieyu Chen, Xiaoshan Zhao\",\"doi\":\"10.1186/s40168-024-01826-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The prevalence of hyperuricaemia (HUA), a metabolic disorder characterized by elevated levels of uric acid, is on the rise and is frequently associated with renal injury. Gut microbiota and gut-derived uremic toxins are critical mediators in the gut-kidney axis that can cause damage to kidney function. Gut dysbiosis has been implicated in various kidney diseases. However, the role and underlying mechanism of the gut microbiota in HUA-induced renal injury remain unknown.</p><p><strong>Results: </strong>A HUA rat model was first established by knocking out the uricase (UOX). HUA rats exhibited apparent renal dysfunction, renal tubular injury, fibrosis, NLRP3 inflammasome activation, and impaired intestinal barrier functions. Analysis of 16S rRNA sequencing and functional prediction data revealed an abnormal gut microbiota profile and activation of pathways associated with uremic toxin production. A metabolomic analysis showed evident accumulation of gut-derived uremic toxins in the kidneys of HUA rats. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the effects of HUA-induced gut dysbiosis on renal injury. Mice recolonized with HUA microbiota exhibited severe renal injury and impaired intestinal barrier functions following renal ischemia/reperfusion (I/R) surgery. Notably, in NLRP3-knockout (NLRP3<sup>-/-</sup>) I/R mice, the deleterious effects of the HUA microbiota on renal injury and the intestinal barrier were eliminated.</p><p><strong>Conclusion: </strong>Our results demonstrate that HUA-induced gut dysbiosis contributes to the development of renal injury, possibly by promoting the production of gut-derived uremic toxins and subsequently activating the NLRP3 inflammasome. Our data suggest a potential therapeutic strategy for the treatment of renal diseases by targeting the gut microbiota and the NLRP3 inflammasome. Video Abstract.</p>\",\"PeriodicalId\":18447,\"journal\":{\"name\":\"Microbiome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191305/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40168-024-01826-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-01826-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:高尿酸血症(HUA)是一种以尿酸水平升高为特征的代谢性疾病,其发病率呈上升趋势,并且经常与肾损伤相关。肠道微生物群和肠道衍生的尿毒症毒素是肠道-肾脏轴的关键介质,可对肾功能造成损害。肠道菌群失调与多种肾脏疾病有关。然而,肠道微生物群在 HUA 诱导的肾损伤中的作用和潜在机制仍不清楚:结果:首先通过敲除尿酸酶(UOX)建立了 HUA 大鼠模型。结果:首先通过敲除尿酸酶(UOX)建立了 HUA 大鼠模型,HUA 大鼠表现出明显的肾功能障碍、肾小管损伤、纤维化、NLRP3 炎性体激活和肠道屏障功能受损。对 16S rRNA 测序和功能预测数据的分析表明,肠道微生物群谱系异常,与尿毒症毒素产生相关的通路被激活。代谢组学分析显示,肠道衍生的尿毒症毒素在HUA大鼠的肾脏中明显累积。此外,还进行了粪便微生物群移植(FMT),以证实 HUA 引起的肠道菌群失调对肾损伤的影响。肾缺血/再灌注(I/R)手术后,重新定植了HUA微生物群的小鼠表现出严重的肾损伤和肠道屏障功能受损。值得注意的是,在 NLRP3 基因敲除(NLRP3-/-)的 I/R 小鼠中,HUA 微生物群对肾损伤和肠屏障的有害影响被消除了:我们的研究结果表明,HUA诱导的肠道菌群失调可能通过促进肠道尿毒症毒素的产生并随后激活NLRP3炎性体,从而导致肾损伤的发生。我们的数据表明,通过靶向肠道微生物群和 NLRP3 炎性体,治疗肾脏疾病是一种潜在的治疗策略。视频摘要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gut microbiota dysbiosis in hyperuricaemia promotes renal injury through the activation of NLRP3 inflammasome.

Background: The prevalence of hyperuricaemia (HUA), a metabolic disorder characterized by elevated levels of uric acid, is on the rise and is frequently associated with renal injury. Gut microbiota and gut-derived uremic toxins are critical mediators in the gut-kidney axis that can cause damage to kidney function. Gut dysbiosis has been implicated in various kidney diseases. However, the role and underlying mechanism of the gut microbiota in HUA-induced renal injury remain unknown.

Results: A HUA rat model was first established by knocking out the uricase (UOX). HUA rats exhibited apparent renal dysfunction, renal tubular injury, fibrosis, NLRP3 inflammasome activation, and impaired intestinal barrier functions. Analysis of 16S rRNA sequencing and functional prediction data revealed an abnormal gut microbiota profile and activation of pathways associated with uremic toxin production. A metabolomic analysis showed evident accumulation of gut-derived uremic toxins in the kidneys of HUA rats. Furthermore, faecal microbiota transplantation (FMT) was performed to confirm the effects of HUA-induced gut dysbiosis on renal injury. Mice recolonized with HUA microbiota exhibited severe renal injury and impaired intestinal barrier functions following renal ischemia/reperfusion (I/R) surgery. Notably, in NLRP3-knockout (NLRP3-/-) I/R mice, the deleterious effects of the HUA microbiota on renal injury and the intestinal barrier were eliminated.

Conclusion: Our results demonstrate that HUA-induced gut dysbiosis contributes to the development of renal injury, possibly by promoting the production of gut-derived uremic toxins and subsequently activating the NLRP3 inflammasome. Our data suggest a potential therapeutic strategy for the treatment of renal diseases by targeting the gut microbiota and the NLRP3 inflammasome. Video Abstract.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
期刊最新文献
Microbial colonisation rewires the composition and content of poplar root exudates, root and shoot metabolomes Succession of rumen microbiota and metabolites across different reproductive periods in different sheep breeds and their impact on the growth and development of offspring lambs Predicting how varying moisture conditions impact the microbiome of dust collected from the International Space Station Microbial mechanisms for higher hydrogen production in anaerobic digestion at constant temperature versus gradient heating Enrichment of novel entomopathogenic Pseudomonas species enhances willow resistance to leaf beetles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1