Mao Peng , Astrid Mueller , Joanna E. Kowalczyk , Roland S. Kun , Ronald P. de Vries
{"title":"利用基于网络的方法发现新型植物生物量转化相关真菌转录因子","authors":"Mao Peng , Astrid Mueller , Joanna E. Kowalczyk , Roland S. Kun , Ronald P. de Vries","doi":"10.1016/j.crbiot.2024.100230","DOIUrl":null,"url":null,"abstract":"<div><p>Fungal plant biomass conversion (FPBC) is an important component of the global carbon cycle and has been widely applied for the production of biofuels, enzymes and biochemicals. Identification of transcription factors (TFs) governing FPBC is crucial for genetic engineering of industrial fungi towards sustainable production of high-value bioproducts from renewable lignocellulose. Here, we developed a bioinformatics framework for the identification of FPBC related TFs based on reconstructed gene regulatory networks and enrichment analysis of manually curated<!--> <!-->FPBC gene sets. Applying this approach to model fungi <em>Aspergillus niger</em> and <em>Neurospora crassa,</em> we successfully identified both known TFs and promising candidates. The function of one identified TF, HapX, has been experimentally validated, and several candidates were supported by literature, transcriptome data and initial growth analysis. Our new approach will accelerate the identification of novel TFs involved in FPBC, and facilitate the further improvement of fungal cell factories.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259026282400056X/pdfft?md5=c721f7d92590436a920a033573fda5c4&pid=1-s2.0-S259026282400056X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Discovery of novel plant biomass conversion associated fungal transcription factors using a network-based approach\",\"authors\":\"Mao Peng , Astrid Mueller , Joanna E. Kowalczyk , Roland S. Kun , Ronald P. de Vries\",\"doi\":\"10.1016/j.crbiot.2024.100230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fungal plant biomass conversion (FPBC) is an important component of the global carbon cycle and has been widely applied for the production of biofuels, enzymes and biochemicals. Identification of transcription factors (TFs) governing FPBC is crucial for genetic engineering of industrial fungi towards sustainable production of high-value bioproducts from renewable lignocellulose. Here, we developed a bioinformatics framework for the identification of FPBC related TFs based on reconstructed gene regulatory networks and enrichment analysis of manually curated<!--> <!-->FPBC gene sets. Applying this approach to model fungi <em>Aspergillus niger</em> and <em>Neurospora crassa,</em> we successfully identified both known TFs and promising candidates. The function of one identified TF, HapX, has been experimentally validated, and several candidates were supported by literature, transcriptome data and initial growth analysis. Our new approach will accelerate the identification of novel TFs involved in FPBC, and facilitate the further improvement of fungal cell factories.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259026282400056X/pdfft?md5=c721f7d92590436a920a033573fda5c4&pid=1-s2.0-S259026282400056X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259026282400056X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259026282400056X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Discovery of novel plant biomass conversion associated fungal transcription factors using a network-based approach
Fungal plant biomass conversion (FPBC) is an important component of the global carbon cycle and has been widely applied for the production of biofuels, enzymes and biochemicals. Identification of transcription factors (TFs) governing FPBC is crucial for genetic engineering of industrial fungi towards sustainable production of high-value bioproducts from renewable lignocellulose. Here, we developed a bioinformatics framework for the identification of FPBC related TFs based on reconstructed gene regulatory networks and enrichment analysis of manually curated FPBC gene sets. Applying this approach to model fungi Aspergillus niger and Neurospora crassa, we successfully identified both known TFs and promising candidates. The function of one identified TF, HapX, has been experimentally validated, and several candidates were supported by literature, transcriptome data and initial growth analysis. Our new approach will accelerate the identification of novel TFs involved in FPBC, and facilitate the further improvement of fungal cell factories.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.