渐进式负载数据中心集中冷却系统的生命周期优化设计和能源效益

IF 9 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2024-06-19 DOI:10.1016/j.renene.2024.120847
Yingbo Zhang , Hangxin Li , Shengwei Wang
{"title":"渐进式负载数据中心集中冷却系统的生命周期优化设计和能源效益","authors":"Yingbo Zhang ,&nbsp;Hangxin Li ,&nbsp;Shengwei Wang","doi":"10.1016/j.renene.2024.120847","DOIUrl":null,"url":null,"abstract":"<div><p>Cooling of data centers requires a significant amount of energy, comparable to the energy consumption of the servers themselves. The current design of the centralized cooling systems for data centers is based on ideal IT loading conditions (i.e., 100 % loading). However, such conventional design often results in significant oversized cooling systems and leads to substantial energy waste, since most data centers operate at part load in their lifespan. To address this issue, this study proposes an optimal design for centralized cooling systems with multiple chillers under progressive loading. The optimization problem, aimed at minimizing life-cycle cost, is formulated adopting SLSQP (Sequential Least Squares Programming) algorithm. A cooling system model is developed using the manufacturer's performance data of cooling equipment. The optimal designs in different climate zones are identified according to energy performance under full-range loads and ambient temperatures. Furthermore, this study comprehensively analyzes and compares free cooling hours, cooling energy, and life-cycle cost of the optimized designs with conventional designs. The results show that the optimized cooling systems could operate more energy-efficiently, despite decreased free cooling hours (13–860). Significant cooling energy savings over the lifespan could be achieved, i.e., 4–22 %, corresponding to the PUE reductions of 0.02–0.11, depending on climate conditions and control strategies.</p></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Life-cycle optimal design and energy benefits of centralized cooling systems for data centers concerning progressive loading\",\"authors\":\"Yingbo Zhang ,&nbsp;Hangxin Li ,&nbsp;Shengwei Wang\",\"doi\":\"10.1016/j.renene.2024.120847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cooling of data centers requires a significant amount of energy, comparable to the energy consumption of the servers themselves. The current design of the centralized cooling systems for data centers is based on ideal IT loading conditions (i.e., 100 % loading). However, such conventional design often results in significant oversized cooling systems and leads to substantial energy waste, since most data centers operate at part load in their lifespan. To address this issue, this study proposes an optimal design for centralized cooling systems with multiple chillers under progressive loading. The optimization problem, aimed at minimizing life-cycle cost, is formulated adopting SLSQP (Sequential Least Squares Programming) algorithm. A cooling system model is developed using the manufacturer's performance data of cooling equipment. The optimal designs in different climate zones are identified according to energy performance under full-range loads and ambient temperatures. Furthermore, this study comprehensively analyzes and compares free cooling hours, cooling energy, and life-cycle cost of the optimized designs with conventional designs. The results show that the optimized cooling systems could operate more energy-efficiently, despite decreased free cooling hours (13–860). Significant cooling energy savings over the lifespan could be achieved, i.e., 4–22 %, corresponding to the PUE reductions of 0.02–0.11, depending on climate conditions and control strategies.</p></div>\",\"PeriodicalId\":419,\"journal\":{\"name\":\"Renewable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960148124009157\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124009157","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

数据中心的冷却需要大量能源,相当于服务器本身的能耗。目前数据中心集中冷却系统的设计是基于理想的 IT 负载条件(即 100% 负载)。然而,这种传统设计往往会导致冷却系统严重过大,造成大量能源浪费,因为大多数数据中心在其生命周期内都是在部分负荷的情况下运行的。为解决这一问题,本研究提出了渐进加载情况下多个冷却器集中冷却系统的优化设计方案。采用 SLSQP(顺序最小二乘法编程)算法提出了旨在最大限度降低生命周期成本的优化问题。利用制造商提供的冷却设备性能数据,建立了冷却系统模型。根据全范围负荷和环境温度下的能源性能,确定了不同气候区的最佳设计。此外,本研究还全面分析和比较了优化设计与传统设计的免费冷却时间、冷却能量和生命周期成本。结果表明,尽管自由冷却时间减少(13-860 小时),但优化冷却系统的运行能效更高。根据气候条件和控制策略的不同,可在整个生命周期内节省大量冷却能源,即 4-22%,相当于 PUE 降低 0.02-0.11。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Life-cycle optimal design and energy benefits of centralized cooling systems for data centers concerning progressive loading

Cooling of data centers requires a significant amount of energy, comparable to the energy consumption of the servers themselves. The current design of the centralized cooling systems for data centers is based on ideal IT loading conditions (i.e., 100 % loading). However, such conventional design often results in significant oversized cooling systems and leads to substantial energy waste, since most data centers operate at part load in their lifespan. To address this issue, this study proposes an optimal design for centralized cooling systems with multiple chillers under progressive loading. The optimization problem, aimed at minimizing life-cycle cost, is formulated adopting SLSQP (Sequential Least Squares Programming) algorithm. A cooling system model is developed using the manufacturer's performance data of cooling equipment. The optimal designs in different climate zones are identified according to energy performance under full-range loads and ambient temperatures. Furthermore, this study comprehensively analyzes and compares free cooling hours, cooling energy, and life-cycle cost of the optimized designs with conventional designs. The results show that the optimized cooling systems could operate more energy-efficiently, despite decreased free cooling hours (13–860). Significant cooling energy savings over the lifespan could be achieved, i.e., 4–22 %, corresponding to the PUE reductions of 0.02–0.11, depending on climate conditions and control strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Influence of temperature dependent short-term storage on thermal runaway characteristics in lithium-ion batteries Energetic and exergoeconomic analysis of different configurations of power and hydrogen generation systems using solar based organic Rankine cycle and PEM electrolyzer A multi-parameter estimation of layered rock-soil thermal properties of borehole heat exchanger in a stratified subsurface Effect of the intermittency of non-conventional renewable energy sources on the volatility of the Colombian spot price H2S mitigation for biogas upgrading in a full-scale anaerobic digestion process by using artificial neural network modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1