{"title":"基于自动机器学习的 QUIC 网站指纹识别技术","authors":"Joonseo Ha, Heejun Roh","doi":"10.1016/j.icte.2023.12.008","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, QUIC for the secure and faster connections has standardized but it is unclear that QUIC can cope with website fingerprinting (WF), a technique to infer visited websites from network traffic, since most existing efforts targeted TCP-induced traffic. To this end, we propose a novel QUIC WF technique based on Automated Machine Learning (AutoML). In our approach, we revisit traffic features appeared in literature, but relies on an AutoML framework to achieve best practice without manual intervention. Through experiments, we show that our technique outperforms state-of-the-art WF techniques with an F1-score of 99.79% and a 20-precision of 92.60%.</p></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 3","pages":"Pages 594-599"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405959523001662/pdfft?md5=167bdfd44dc869b16bc3198356f20e4e&pid=1-s2.0-S2405959523001662-main.pdf","citationCount":"0","resultStr":"{\"title\":\"QUIC website fingerprinting based on automated machine learning\",\"authors\":\"Joonseo Ha, Heejun Roh\",\"doi\":\"10.1016/j.icte.2023.12.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, QUIC for the secure and faster connections has standardized but it is unclear that QUIC can cope with website fingerprinting (WF), a technique to infer visited websites from network traffic, since most existing efforts targeted TCP-induced traffic. To this end, we propose a novel QUIC WF technique based on Automated Machine Learning (AutoML). In our approach, we revisit traffic features appeared in literature, but relies on an AutoML framework to achieve best practice without manual intervention. Through experiments, we show that our technique outperforms state-of-the-art WF techniques with an F1-score of 99.79% and a 20-precision of 92.60%.</p></div>\",\"PeriodicalId\":48526,\"journal\":{\"name\":\"ICT Express\",\"volume\":\"10 3\",\"pages\":\"Pages 594-599\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405959523001662/pdfft?md5=167bdfd44dc869b16bc3198356f20e4e&pid=1-s2.0-S2405959523001662-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICT Express\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405959523001662\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959523001662","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
QUIC website fingerprinting based on automated machine learning
Recently, QUIC for the secure and faster connections has standardized but it is unclear that QUIC can cope with website fingerprinting (WF), a technique to infer visited websites from network traffic, since most existing efforts targeted TCP-induced traffic. To this end, we propose a novel QUIC WF technique based on Automated Machine Learning (AutoML). In our approach, we revisit traffic features appeared in literature, but relies on an AutoML framework to achieve best practice without manual intervention. Through experiments, we show that our technique outperforms state-of-the-art WF techniques with an F1-score of 99.79% and a 20-precision of 92.60%.
期刊介绍:
The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.