基于个人舒适度模型和个人舒适度系统的整体和局部环境协同控制

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-06-21 DOI:10.1016/j.apenergy.2024.123707
Yeyu Wu, Haihua Jiang, Weiming Chen, Junhui Fan, Bin Cao
{"title":"基于个人舒适度模型和个人舒适度系统的整体和局部环境协同控制","authors":"Yeyu Wu,&nbsp;Haihua Jiang,&nbsp;Weiming Chen,&nbsp;Junhui Fan,&nbsp;Bin Cao","doi":"10.1016/j.apenergy.2024.123707","DOIUrl":null,"url":null,"abstract":"<div><p>Most methods for creating an indoor thermal environment are based on controlling heating, ventilation, and air conditioning (HVAC) systems and do not consider the various needs of individuals in a multiperson space. Personal comfort systems (PCS) and personal comfort models (PCM) are popular technologies for achieving personal thermal comfort. This paper presents a thermal environmental collaborative control system (TECCS) that regulates environments at different spatial scales by leveraging the advantages of the HVAC system, PCS, PCM, and PCM-based automatic control to address the issue of individual differences in thermal demand in multiperson environments. The TECCS predicts thermal sensation votes (TSV) by combining facial skin temperature data obtained by an infrared sensor with environmental parameters. Subsequently, it performs the corresponding PCS control and adjusts the air conditioner according to the operating state of the PCS. This study proposes a collaborative control strategy with PCS at the core, enabling communication between thermal state recognition, HVAC system, and PCS. Twenty-eight adult males participated in the experiments testing the TECCS's performance. The results indicate that the TECCS can automatically regulate environments at different spatial scales based on thermal sensation prediction and that the operating state of the PCS can effectively guide air conditioning operations. Compared with constant setpoint control, the TECCS offers the advantage of improving thermal comfort. This paper also proposes future optimization directions based on the research results, focusing on recognition, equipment, and control.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overall and local environmental collaborative control based on personal comfort model and personal comfort system\",\"authors\":\"Yeyu Wu,&nbsp;Haihua Jiang,&nbsp;Weiming Chen,&nbsp;Junhui Fan,&nbsp;Bin Cao\",\"doi\":\"10.1016/j.apenergy.2024.123707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Most methods for creating an indoor thermal environment are based on controlling heating, ventilation, and air conditioning (HVAC) systems and do not consider the various needs of individuals in a multiperson space. Personal comfort systems (PCS) and personal comfort models (PCM) are popular technologies for achieving personal thermal comfort. This paper presents a thermal environmental collaborative control system (TECCS) that regulates environments at different spatial scales by leveraging the advantages of the HVAC system, PCS, PCM, and PCM-based automatic control to address the issue of individual differences in thermal demand in multiperson environments. The TECCS predicts thermal sensation votes (TSV) by combining facial skin temperature data obtained by an infrared sensor with environmental parameters. Subsequently, it performs the corresponding PCS control and adjusts the air conditioner according to the operating state of the PCS. This study proposes a collaborative control strategy with PCS at the core, enabling communication between thermal state recognition, HVAC system, and PCS. Twenty-eight adult males participated in the experiments testing the TECCS's performance. The results indicate that the TECCS can automatically regulate environments at different spatial scales based on thermal sensation prediction and that the operating state of the PCS can effectively guide air conditioning operations. Compared with constant setpoint control, the TECCS offers the advantage of improving thermal comfort. This paper also proposes future optimization directions based on the research results, focusing on recognition, equipment, and control.</p></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924010900\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924010900","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

创造室内热环境的大多数方法都是基于对供暖、通风和空调系统的控制,并没有考虑到多人空间中个人的各种需求。个人舒适系统(PCS)和个人舒适模型(PCM)是实现个人热舒适的流行技术。本文介绍了一种热环境协同控制系统(TECCS),该系统通过利用暖通空调系统、个人舒适系统、个人舒适模型和基于个人舒适模型的自动控制的优势来调节不同空间尺度的环境,从而解决多人环境中热需求的个体差异问题。TECCS 通过将红外传感器获得的面部皮肤温度数据与环境参数相结合,预测热感觉票数(TSV)。随后,它执行相应的 PCS 控制,并根据 PCS 的运行状态调节空调。本研究提出了一种以 PCS 为核心的协同控制策略,实现了热状态识别、暖通空调系统和 PCS 之间的通信。28 名成年男性参加了测试 TECCS 性能的实验。结果表明,TECCS 可以根据热感觉预测自动调节不同空间尺度的环境,PCS 的运行状态可以有效地指导空调运行。与恒定设定点控制相比,TECCS 具有改善热舒适度的优势。本文还根据研究成果提出了未来的优化方向,重点关注识别、设备和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overall and local environmental collaborative control based on personal comfort model and personal comfort system

Most methods for creating an indoor thermal environment are based on controlling heating, ventilation, and air conditioning (HVAC) systems and do not consider the various needs of individuals in a multiperson space. Personal comfort systems (PCS) and personal comfort models (PCM) are popular technologies for achieving personal thermal comfort. This paper presents a thermal environmental collaborative control system (TECCS) that regulates environments at different spatial scales by leveraging the advantages of the HVAC system, PCS, PCM, and PCM-based automatic control to address the issue of individual differences in thermal demand in multiperson environments. The TECCS predicts thermal sensation votes (TSV) by combining facial skin temperature data obtained by an infrared sensor with environmental parameters. Subsequently, it performs the corresponding PCS control and adjusts the air conditioner according to the operating state of the PCS. This study proposes a collaborative control strategy with PCS at the core, enabling communication between thermal state recognition, HVAC system, and PCS. Twenty-eight adult males participated in the experiments testing the TECCS's performance. The results indicate that the TECCS can automatically regulate environments at different spatial scales based on thermal sensation prediction and that the operating state of the PCS can effectively guide air conditioning operations. Compared with constant setpoint control, the TECCS offers the advantage of improving thermal comfort. This paper also proposes future optimization directions based on the research results, focusing on recognition, equipment, and control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Comprehensive framework on wind energy: A sustainable site selection under uncertainty and reliability, layout optimization and 7E analysis Physically rational data augmentation for energy consumption estimation of electric vehicles Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles Robust decomposition and tracking strategy for demand response enhanced virtual power plants Research on optimization strategy of futures hedging dependent on market state
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1