用于高通量预测增强复合材料有效热导率的稳健晶格玻尔兹曼方案

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-06-21 DOI:10.1016/j.apenergy.2024.123726
Mingshan Yang , Xiangyu Li , Weiqiu Chen
{"title":"用于高通量预测增强复合材料有效热导率的稳健晶格玻尔兹曼方案","authors":"Mingshan Yang ,&nbsp;Xiangyu Li ,&nbsp;Weiqiu Chen","doi":"10.1016/j.apenergy.2024.123726","DOIUrl":null,"url":null,"abstract":"<div><p>Accurately predicting effective thermal conductivity is of great importance for the design and performance evaluation of emerging composites. In this paper, an efficient and implementation-friendly lattice Boltzmann (LB) scheme for predicting the effective thermal conductivity of 3D complex structures is proposed. The key innovation is that the optimum convergence parameter of the 3D thermal LB method is found, which enables the LB equation to converge to steady heat conduction equation with the fastest speed and without losing any accuracy. To deal with the thermal contact resistance between different components, an interface treatment scheme is derived. In comparison with the existing schemes, the present scheme enjoys several hundred times higher computational efficiency. By virtue of this LB scheme, the effective thermal conductivity of the reinforced composites with different dimensional fillers are systematically calculated, and a comprehensive machine learning model is developed. This work provides a powerful numerical tool for high-throughput simulations of the 3D representative volume elements with high thermal conductivity ratios and large grid numbers. It may facilitate the application of data-driven techniques in study of the thermal transport properties of emerging composite materials and structures.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust lattice Boltzmann scheme for high-throughput predicting effective thermal conductivity of reinforced composites\",\"authors\":\"Mingshan Yang ,&nbsp;Xiangyu Li ,&nbsp;Weiqiu Chen\",\"doi\":\"10.1016/j.apenergy.2024.123726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurately predicting effective thermal conductivity is of great importance for the design and performance evaluation of emerging composites. In this paper, an efficient and implementation-friendly lattice Boltzmann (LB) scheme for predicting the effective thermal conductivity of 3D complex structures is proposed. The key innovation is that the optimum convergence parameter of the 3D thermal LB method is found, which enables the LB equation to converge to steady heat conduction equation with the fastest speed and without losing any accuracy. To deal with the thermal contact resistance between different components, an interface treatment scheme is derived. In comparison with the existing schemes, the present scheme enjoys several hundred times higher computational efficiency. By virtue of this LB scheme, the effective thermal conductivity of the reinforced composites with different dimensional fillers are systematically calculated, and a comprehensive machine learning model is developed. This work provides a powerful numerical tool for high-throughput simulations of the 3D representative volume elements with high thermal conductivity ratios and large grid numbers. It may facilitate the application of data-driven techniques in study of the thermal transport properties of emerging composite materials and structures.</p></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924011097\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924011097","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

准确预测有效热导率对于新兴复合材料的设计和性能评估至关重要。本文提出了一种用于预测三维复杂结构有效热导率的高效且易于实施的晶格玻尔兹曼(LB)方案。其主要创新点在于找到了三维热 LB 方法的最佳收敛参数,从而使 LB 方程以最快的速度收敛到稳定的热传导方程,且不损失任何精度。为了处理不同组件之间的热接触电阻,推导出了一种界面处理方案。与现有方案相比,本方案的计算效率提高了几百倍。利用该 LB 方案,系统地计算了不同尺寸填料增强复合材料的有效热导率,并开发了一个全面的机器学习模型。这项工作为高热导率和大网格数的三维代表体积元素的高通量模拟提供了强大的数值工具。它可以促进数据驱动技术在新兴复合材料和结构的热传输特性研究中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust lattice Boltzmann scheme for high-throughput predicting effective thermal conductivity of reinforced composites

Accurately predicting effective thermal conductivity is of great importance for the design and performance evaluation of emerging composites. In this paper, an efficient and implementation-friendly lattice Boltzmann (LB) scheme for predicting the effective thermal conductivity of 3D complex structures is proposed. The key innovation is that the optimum convergence parameter of the 3D thermal LB method is found, which enables the LB equation to converge to steady heat conduction equation with the fastest speed and without losing any accuracy. To deal with the thermal contact resistance between different components, an interface treatment scheme is derived. In comparison with the existing schemes, the present scheme enjoys several hundred times higher computational efficiency. By virtue of this LB scheme, the effective thermal conductivity of the reinforced composites with different dimensional fillers are systematically calculated, and a comprehensive machine learning model is developed. This work provides a powerful numerical tool for high-throughput simulations of the 3D representative volume elements with high thermal conductivity ratios and large grid numbers. It may facilitate the application of data-driven techniques in study of the thermal transport properties of emerging composite materials and structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Comprehensive framework on wind energy: A sustainable site selection under uncertainty and reliability, layout optimization and 7E analysis Physically rational data augmentation for energy consumption estimation of electric vehicles Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles Robust decomposition and tracking strategy for demand response enhanced virtual power plants Research on optimization strategy of futures hedging dependent on market state
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1