三维图像分析明确了水稻生长初期的根系分布,以避免干旱。

IF 3.6 2区 生物学 Q1 PLANT SCIENCES Annals of botany Pub Date : 2024-06-22 DOI:10.1093/aob/mcae101
Yuko Numajiri, Saki Yoshida, Takeshi Hayashi, Yusaku Uga
{"title":"三维图像分析明确了水稻生长初期的根系分布,以避免干旱。","authors":"Yuko Numajiri, Saki Yoshida, Takeshi Hayashi, Yusaku Uga","doi":"10.1093/aob/mcae101","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and aims: </strong>Root system architecture (RSA) plays a key role in plant adaptation to drought because deep rooting enables better water uptake than shallow rooting under terminal drought. Understanding RSA during early plant development is essential for improving crop yields, as early drought can affect subsequent shoot growth. Herein, we demonstrate that root distribution in the topsoil significantly impacts shoot growth during the early stages of rice (Oryza sativa) development under drought, as assessed through three-dimensional (3D) image analysis.</p><p><strong>Methods: </strong>We used 109 F12 recombinant inbred lines (RILs) obtained from a cross between shallow-rooting lowland rice and deep-rooting upland rice, representing a population with diverse RSA. We applied a moderate drought during the early development of rice grown in a plant pot (25 cm height) by stopping irrigation 14 days after sowing (DAS). Time-series RSA at 14, 21, and 28 DAS was visualized by X-ray computed tomography, and subsequently compared between drought and well-watered conditions. Following this analysis, we further investigated drought-avoidant RSA by testing 20 randomly selected RILs under drought conditions.</p><p><strong>Key results: </strong>We inferred the root location that most influences shoot growth using a hierarchical Bayes approach: the root segment depth, which positively impacted shoot growth, ranged between 1.7-3.4 cm under drought conditions and between 0.0-1.7 cm under well-watered conditions. Drought-avoidant RILs had a higher root density in the lower layers of the topsoil compared to the others.</p><p><strong>Conclusions: </strong>Fine classification of soil layers using 3D image analysis revealed that increasing root density in the lower layers of the topsoil, rather than in the subsoil, is advantageous for drought avoidance during the early growth stage of rice.</p>","PeriodicalId":8023,"journal":{"name":"Annals of botany","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional image analysis specifies the root distribution for drought avoidance in the early growth stage of rice.\",\"authors\":\"Yuko Numajiri, Saki Yoshida, Takeshi Hayashi, Yusaku Uga\",\"doi\":\"10.1093/aob/mcae101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and aims: </strong>Root system architecture (RSA) plays a key role in plant adaptation to drought because deep rooting enables better water uptake than shallow rooting under terminal drought. Understanding RSA during early plant development is essential for improving crop yields, as early drought can affect subsequent shoot growth. Herein, we demonstrate that root distribution in the topsoil significantly impacts shoot growth during the early stages of rice (Oryza sativa) development under drought, as assessed through three-dimensional (3D) image analysis.</p><p><strong>Methods: </strong>We used 109 F12 recombinant inbred lines (RILs) obtained from a cross between shallow-rooting lowland rice and deep-rooting upland rice, representing a population with diverse RSA. We applied a moderate drought during the early development of rice grown in a plant pot (25 cm height) by stopping irrigation 14 days after sowing (DAS). Time-series RSA at 14, 21, and 28 DAS was visualized by X-ray computed tomography, and subsequently compared between drought and well-watered conditions. Following this analysis, we further investigated drought-avoidant RSA by testing 20 randomly selected RILs under drought conditions.</p><p><strong>Key results: </strong>We inferred the root location that most influences shoot growth using a hierarchical Bayes approach: the root segment depth, which positively impacted shoot growth, ranged between 1.7-3.4 cm under drought conditions and between 0.0-1.7 cm under well-watered conditions. Drought-avoidant RILs had a higher root density in the lower layers of the topsoil compared to the others.</p><p><strong>Conclusions: </strong>Fine classification of soil layers using 3D image analysis revealed that increasing root density in the lower layers of the topsoil, rather than in the subsoil, is advantageous for drought avoidance during the early growth stage of rice.</p>\",\"PeriodicalId\":8023,\"journal\":{\"name\":\"Annals of botany\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/aob/mcae101\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aob/mcae101","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:根系结构(RSA)在植物适应干旱的过程中起着关键作用,因为在终期干旱下,深根比浅根能够更好地吸收水分。了解植物早期发育过程中的根系结构对提高作物产量至关重要,因为早期干旱会影响随后的嫩枝生长。在此,我们通过三维(3D)图像分析证明,在干旱条件下,表土中的根系分布对水稻(Oryza sativa)发育早期的芽生长有显著影响:我们利用浅根低地水稻和深根高地水稻杂交获得的 109 个 F12 重组近交系 (RIL),它们代表了具有不同 RSA 的群体。我们在播种后 14 天(DAS)停止灌溉,在盆栽水稻(25 厘米高)的早期生长过程中施加了中度干旱。通过 X 射线计算机断层扫描观察了 14、21 和 28 DAS 的时间序列 RSA,随后比较了干旱和充足浇水条件下的 RSA。在这一分析之后,我们通过在干旱条件下测试随机选择的 20 个 RIL,进一步研究了抗旱 RSA:我们利用分层贝叶斯方法推断出了对幼苗生长影响最大的根部位置:在干旱条件下,对幼苗生长有积极影响的根段深度在 1.7-3.4 厘米之间,而在水分充足的条件下,根段深度在 0.0-1.7 厘米之间。与其他RIL相比,抗旱RIL在表土下层的根系密度更高:结论:利用三维图像分析对土壤层进行精细分类发现,增加表土下层而非底层的根系密度有利于水稻早期生长阶段的抗旱性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional image analysis specifies the root distribution for drought avoidance in the early growth stage of rice.

Background and aims: Root system architecture (RSA) plays a key role in plant adaptation to drought because deep rooting enables better water uptake than shallow rooting under terminal drought. Understanding RSA during early plant development is essential for improving crop yields, as early drought can affect subsequent shoot growth. Herein, we demonstrate that root distribution in the topsoil significantly impacts shoot growth during the early stages of rice (Oryza sativa) development under drought, as assessed through three-dimensional (3D) image analysis.

Methods: We used 109 F12 recombinant inbred lines (RILs) obtained from a cross between shallow-rooting lowland rice and deep-rooting upland rice, representing a population with diverse RSA. We applied a moderate drought during the early development of rice grown in a plant pot (25 cm height) by stopping irrigation 14 days after sowing (DAS). Time-series RSA at 14, 21, and 28 DAS was visualized by X-ray computed tomography, and subsequently compared between drought and well-watered conditions. Following this analysis, we further investigated drought-avoidant RSA by testing 20 randomly selected RILs under drought conditions.

Key results: We inferred the root location that most influences shoot growth using a hierarchical Bayes approach: the root segment depth, which positively impacted shoot growth, ranged between 1.7-3.4 cm under drought conditions and between 0.0-1.7 cm under well-watered conditions. Drought-avoidant RILs had a higher root density in the lower layers of the topsoil compared to the others.

Conclusions: Fine classification of soil layers using 3D image analysis revealed that increasing root density in the lower layers of the topsoil, rather than in the subsoil, is advantageous for drought avoidance during the early growth stage of rice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of botany
Annals of botany 生物-植物科学
CiteScore
7.90
自引率
4.80%
发文量
138
审稿时长
3 months
期刊介绍: Annals of Botany is an international plant science journal publishing novel and rigorous research in all areas of plant science. It is published monthly in both electronic and printed forms with at least two extra issues each year that focus on a particular theme in plant biology. The Journal is managed by the Annals of Botany Company, a not-for-profit educational charity established to promote plant science worldwide. The Journal publishes original research papers, invited and submitted review articles, ''Research in Context'' expanding on original work, ''Botanical Briefings'' as short overviews of important topics, and ''Viewpoints'' giving opinions. All papers in each issue are summarized briefly in Content Snapshots , there are topical news items in the Plant Cuttings section and Book Reviews . A rigorous review process ensures that readers are exposed to genuine and novel advances across a wide spectrum of botanical knowledge. All papers aim to advance knowledge and make a difference to our understanding of plant science.
期刊最新文献
Inferring complex evolutionary history of the closely related East Asian wild roses in Rosa sect. Synstylae (Rosaceae) based on genomic evidence from conserved orthologs Regulation of maize root growth by local phosphorus availability, sucrose metabolism, and partitioning Evaluation of direct and transgenerational influences of salinity on germination and early seedling growth in an edible halophyte, Crithmum maritimum Modulation of Plant Transcription Factors and Priming of Stress Tolerance by Plant Growth-Promoting Bacteria: A Systematic Review Using the Montgomery-Koyama-Smith equation to calculate the stomatal area per unit lamina area for 12 Magnoliaceae species
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1