{"title":"病毒、寄生虫和蚊子之间的三方互动。","authors":"Michelle Schinkel, Teun Bousema, Ronald P van Rij","doi":"10.1016/j.cois.2024.101222","DOIUrl":null,"url":null,"abstract":"<div><p>Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium <em>Wolbachia</em> effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect the transmission of the malaria-causing <em>Plasmodium</em> parasite by <em>Anopheles</em> mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in <em>Anopheles</em>. These findings suggest that indirect virus–parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and <em>Anopheles</em> mosquitoes thus merit further investigation.</p></div>","PeriodicalId":11038,"journal":{"name":"Current opinion in insect science","volume":"64 ","pages":"Article 101222"},"PeriodicalIF":5.8000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214574524000646/pdfft?md5=ec9299ee6d90260ecb7ea5a3f7ca7f4b&pid=1-s2.0-S2214574524000646-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tripartite interactions between viruses, parasites, and mosquitoes\",\"authors\":\"Michelle Schinkel, Teun Bousema, Ronald P van Rij\",\"doi\":\"10.1016/j.cois.2024.101222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium <em>Wolbachia</em> effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect the transmission of the malaria-causing <em>Plasmodium</em> parasite by <em>Anopheles</em> mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in <em>Anopheles</em>. These findings suggest that indirect virus–parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and <em>Anopheles</em> mosquitoes thus merit further investigation.</p></div>\",\"PeriodicalId\":11038,\"journal\":{\"name\":\"Current opinion in insect science\",\"volume\":\"64 \",\"pages\":\"Article 101222\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214574524000646/pdfft?md5=ec9299ee6d90260ecb7ea5a3f7ca7f4b&pid=1-s2.0-S2214574524000646-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in insect science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214574524000646\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in insect science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214574524000646","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Tripartite interactions between viruses, parasites, and mosquitoes
Mosquito-borne diseases have a major impact on global human health. Biological agents that colonize the mosquito vector are increasingly explored as an intervention strategy to prevent vector-borne disease transmission. For instance, the release of mosquitoes carrying the endosymbiotic bacterium Wolbachia effectively reduced dengue virus incidence and disease. Insect-specific viruses are likewise considered as biocontrol agents against vector-borne diseases. While most studies focused on insect-specific viruses as an intervention against arthropod-borne viruses, we here consider whether mosquito-specific viruses may affect the transmission of the malaria-causing Plasmodium parasite by Anopheles mosquitoes. Although there is no direct experimental evidence addressing this question, we found that viral infections in dipteran insects activate some of the immune pathways that are antiparasitic in Anopheles. These findings suggest that indirect virus–parasite interactions could occur and that insect-specific viruses may modulate malaria transmission. Tripartite interactions between viruses, parasites, and Anopheles mosquitoes thus merit further investigation.
期刊介绍:
Current Opinion in Insect Science is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up–to–date with the expanding volume of information published in the field of Insect Science. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year.
The following 11 areas are covered by Current Opinion in Insect Science.
-Ecology
-Insect genomics
-Global Change Biology
-Molecular Physiology (Including Immunity)
-Pests and Resistance
-Parasites, Parasitoids and Biological Control
-Behavioural Ecology
-Development and Regulation
-Social Insects
-Neuroscience
-Vectors and Medical and Veterinary Entomology
There is also a section that changes every year to reflect hot topics in the field.
Section Editors, who are major authorities in their area, are appointed by the Editors of the journal. They divide their section into a number of topics, ensuring that the field is comprehensively covered and that all issues of current importance are emphasized. Section Editors commission articles from leading scientists on each topic that they have selected and the commissioned authors write short review articles in which they present recent developments in their subject, emphasizing the aspects that, in their opinion, are most important. In addition, they provide short annotations to the papers that they consider to be most interesting from all those published in their topic over the previous year.