与 Oct4 相关的 PouV 基因 pou5f3 通过直接动态调节 pax2a 来介导斑马鱼峡部的发育。

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Cells and Development Pub Date : 2024-06-20 DOI:10.1016/j.cdev.2024.203933
{"title":"与 Oct4 相关的 PouV 基因 pou5f3 通过直接动态调节 pax2a 来介导斑马鱼峡部的发育。","authors":"","doi":"10.1016/j.cdev.2024.203933","DOIUrl":null,"url":null,"abstract":"<div><p>Using a transgenic zebrafish line harboring a heat-inducible dominant-interference <em>pou5f3</em> gene (<em>en-pou5f3</em>), we reported that this <em>PouV</em> gene is involved in isthmus development at the midbrain-hindbrain boundary (MHB), which patterns the midbrain and cerebellum. Importantly, the functions of <em>pou5f3</em> reportedly differ before and after the end of gastrulation. In the present study, we examined in detail the effects of <em>en-pou5f3</em> induction on isthmus development during embryogenesis. When <em>en-pou5f3</em> was induced around the end of gastrulation (bud stage), the isthmus was abrogated or deformed by the end of somitogenesis (24 hours post-fertilization). At this stage, the expression of MHB markers –– such as <em>pax2a</em>, <em>fgf8a</em>, <em>wnt1</em>, and <em>gbx2</em> –– was absent in embryos lacking the isthmus structure, whereas it was present, although severely distorted, in embryos with a deformed isthmus. We further found that, after <em>en-pou5f3</em> induction at late gastrulation, <em>pax2a</em>, <em>fgf8a</em>, and <em>wnt1</em> were immediately and irreversibly downregulated, whereas the expression of <em>en2a</em> and <em>gbx2</em> was reduced only weakly and slowly. Induction of <em>en-pou5f3</em> at early somite stages also immediately downregulated MHB genes, particularly <em>pax2a</em>, but their expression was restored later. Overall, the data suggested that <em>pou5f3</em> directly upregulates at least <em>pax2a</em> and possibly <em>fgf8a</em> and <em>wnt1</em>, which function in parallel in establishing the MHB, and that the role of <em>pou5f3</em> dynamically changes around the end of gastrulation. We next examined the transcriptional regulation of <em>pax2a</em> using both <em>in vitro</em> and <em>in vivo</em> reporter analyses; the results showed that two upstream 1.0-kb regions with sequences conserved among vertebrates specifically drove transcription at the MHB. These reporter analyses confirmed that development of the isthmic organizer is regulated by <em>PouV</em> through direct regulation of <em>pax2/pax2a</em> in vertebrate embryos.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667290124000342/pdfft?md5=b61986f43b731fec0690814d585adbf7&pid=1-s2.0-S2667290124000342-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Oct4-related PouV gene, pou5f3, mediates isthmus development in zebrafish by directly and dynamically regulating pax2a\",\"authors\":\"\",\"doi\":\"10.1016/j.cdev.2024.203933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using a transgenic zebrafish line harboring a heat-inducible dominant-interference <em>pou5f3</em> gene (<em>en-pou5f3</em>), we reported that this <em>PouV</em> gene is involved in isthmus development at the midbrain-hindbrain boundary (MHB), which patterns the midbrain and cerebellum. Importantly, the functions of <em>pou5f3</em> reportedly differ before and after the end of gastrulation. In the present study, we examined in detail the effects of <em>en-pou5f3</em> induction on isthmus development during embryogenesis. When <em>en-pou5f3</em> was induced around the end of gastrulation (bud stage), the isthmus was abrogated or deformed by the end of somitogenesis (24 hours post-fertilization). At this stage, the expression of MHB markers –– such as <em>pax2a</em>, <em>fgf8a</em>, <em>wnt1</em>, and <em>gbx2</em> –– was absent in embryos lacking the isthmus structure, whereas it was present, although severely distorted, in embryos with a deformed isthmus. We further found that, after <em>en-pou5f3</em> induction at late gastrulation, <em>pax2a</em>, <em>fgf8a</em>, and <em>wnt1</em> were immediately and irreversibly downregulated, whereas the expression of <em>en2a</em> and <em>gbx2</em> was reduced only weakly and slowly. Induction of <em>en-pou5f3</em> at early somite stages also immediately downregulated MHB genes, particularly <em>pax2a</em>, but their expression was restored later. Overall, the data suggested that <em>pou5f3</em> directly upregulates at least <em>pax2a</em> and possibly <em>fgf8a</em> and <em>wnt1</em>, which function in parallel in establishing the MHB, and that the role of <em>pou5f3</em> dynamically changes around the end of gastrulation. We next examined the transcriptional regulation of <em>pax2a</em> using both <em>in vitro</em> and <em>in vivo</em> reporter analyses; the results showed that two upstream 1.0-kb regions with sequences conserved among vertebrates specifically drove transcription at the MHB. These reporter analyses confirmed that development of the isthmic organizer is regulated by <em>PouV</em> through direct regulation of <em>pax2/pax2a</em> in vertebrate embryos.</p></div>\",\"PeriodicalId\":36123,\"journal\":{\"name\":\"Cells and Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667290124000342/pdfft?md5=b61986f43b731fec0690814d585adbf7&pid=1-s2.0-S2667290124000342-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667290124000342\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667290124000342","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

我们利用携带热诱导显性干扰pou5f3基因(en-pou5f3)的转基因斑马鱼品系,报道了该PouV基因参与了中脑-后脑边界(MHB)的峡部发育,从而形成了中脑和小脑。重要的是,据报道 pou5f3 在胃形成结束前后的功能有所不同。在本研究中,我们详细研究了胚胎发育过程中诱导 en-pou5f3 对峡部发育的影响。在胚胎发育末期(芽期)前后诱导en-pou5f3时,峡部在体细胞发生末期(受精后24小时)已经消失或变形。在这一阶段,缺乏峡部结构的胚胎中没有MHB标记物(如pax2a、fff8a、wnt1和gbx2)的表达,而有畸形峡部的胚胎中则有MHB标记物的表达,但严重扭曲。我们还发现,在胚胎发育后期诱导 en-pou5f3 后,pax2a、fff8a 和 wnt1 的表达立即出现不可逆的下调,而 en2a 和 gbx2 的表达仅出现微弱且缓慢的下降。在体细胞早期阶段诱导 en-pou5f3 也会立即下调 MHB 基因,尤其是 pax2a,但它们的表达随后会恢复。总之,这些数据表明,pou5f3至少直接上调pax2a,也可能上调fff8a和wnt1,它们在建立MHB的过程中并行发挥作用,而且pou5f3的作用在胃形成末期会发生动态变化。接下来,我们利用体外和体内报告基因分析研究了pax2a的转录调控;结果表明,两个上游1.0 kb区域的序列在脊椎动物中是保守的,它们特异性地驱动了MHB的转录。这些报告分析证实,在脊椎动物胚胎中,峡部组织器的发育是由PouV通过直接调控pax2/pax2a来调控的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Oct4-related PouV gene, pou5f3, mediates isthmus development in zebrafish by directly and dynamically regulating pax2a

Using a transgenic zebrafish line harboring a heat-inducible dominant-interference pou5f3 gene (en-pou5f3), we reported that this PouV gene is involved in isthmus development at the midbrain-hindbrain boundary (MHB), which patterns the midbrain and cerebellum. Importantly, the functions of pou5f3 reportedly differ before and after the end of gastrulation. In the present study, we examined in detail the effects of en-pou5f3 induction on isthmus development during embryogenesis. When en-pou5f3 was induced around the end of gastrulation (bud stage), the isthmus was abrogated or deformed by the end of somitogenesis (24 hours post-fertilization). At this stage, the expression of MHB markers –– such as pax2a, fgf8a, wnt1, and gbx2 –– was absent in embryos lacking the isthmus structure, whereas it was present, although severely distorted, in embryos with a deformed isthmus. We further found that, after en-pou5f3 induction at late gastrulation, pax2a, fgf8a, and wnt1 were immediately and irreversibly downregulated, whereas the expression of en2a and gbx2 was reduced only weakly and slowly. Induction of en-pou5f3 at early somite stages also immediately downregulated MHB genes, particularly pax2a, but their expression was restored later. Overall, the data suggested that pou5f3 directly upregulates at least pax2a and possibly fgf8a and wnt1, which function in parallel in establishing the MHB, and that the role of pou5f3 dynamically changes around the end of gastrulation. We next examined the transcriptional regulation of pax2a using both in vitro and in vivo reporter analyses; the results showed that two upstream 1.0-kb regions with sequences conserved among vertebrates specifically drove transcription at the MHB. These reporter analyses confirmed that development of the isthmic organizer is regulated by PouV through direct regulation of pax2/pax2a in vertebrate embryos.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
期刊最新文献
Transcriptional regulation of postnatal aortic development Establishment of functional trophoblast organoids from trophoblast cells of bovine placenta Twisted cell flow facilitates three-dimensional somite morphogenesis in zebrafish Front Cover Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1