Aliakbar Rostami Abookheili, Jahanbakhsh Asadi, Ayyoob Khosravi, Ali Gorji
{"title":"岩藻糖基转移酶3和8通过CD15s和E-cadherin促进食管癌中癌症干样细胞的转移能力","authors":"Aliakbar Rostami Abookheili, Jahanbakhsh Asadi, Ayyoob Khosravi, Ali Gorji","doi":"10.22038/IJBMS.2024.74726.16228","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Esophageal cancer stem cells (ECSCs) have been identified as the subset of cells within esophageal squamous cell carcinoma that possess tumorigenic, invasive, and metastatic properties. One important aspect of cancer metastasis is the binding of sialyl-Lewis X (CD15s) with E- or P-selectin, which facilitates the adhesion and migration of cancer cells to distant sites. This study was conducted to investigate the impact of fucosylation processes on the metastatic behavior of ECSCs.</p><p><strong>Materials and methods: </strong>The esophageal cancer cell line (KYSE-30) was cultured and divided into control and 2F-peracetyl fucose (2F-PerAcFuc) treated groups. Spheres were harvested from these cultures. Cell invasion assay and qPCR were conducted to examine migration and marker expression in both groups. Cancer cell line-derived xenografts were established in nude mice to validate findings <i>in vivo</i>.</p><p><strong>Results: </strong>Our results initially indicated that the addition of 2F-PerAcFuc, an inhibitor of fucosylation, resulted in the down-regulation of the Fut3/CD15s pathway in both cancer stem-like cells and the xenograft model. Measurements of subcutaneous xenograft tumor volume revealed a significant decrease in tumor size among nude mice after treatment with 2F-PerAcFuc. Additionally, a reduction in Fut8/E-cadherin levels was observed in the xenograft model of nude mice. Furthermore, the administration of 2F-PerAcFuc lowered the levels of fucosylated glycoconjugates in nude mice.</p><p><strong>Conclusion: </strong>Our data suggest that inhibition of fucosyltransferase 3 and 8 can reduce the metastatic capacity of cancer stem-like cells by down-regulating CD15s and E-cadherin in a mouse model of esophageal cancer.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fucosyltransferase 3 and 8 promote the metastatic capacity of cancer stem-like cells via CD15s and E-cadherin in esophageal cancer.\",\"authors\":\"Aliakbar Rostami Abookheili, Jahanbakhsh Asadi, Ayyoob Khosravi, Ali Gorji\",\"doi\":\"10.22038/IJBMS.2024.74726.16228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Esophageal cancer stem cells (ECSCs) have been identified as the subset of cells within esophageal squamous cell carcinoma that possess tumorigenic, invasive, and metastatic properties. One important aspect of cancer metastasis is the binding of sialyl-Lewis X (CD15s) with E- or P-selectin, which facilitates the adhesion and migration of cancer cells to distant sites. This study was conducted to investigate the impact of fucosylation processes on the metastatic behavior of ECSCs.</p><p><strong>Materials and methods: </strong>The esophageal cancer cell line (KYSE-30) was cultured and divided into control and 2F-peracetyl fucose (2F-PerAcFuc) treated groups. Spheres were harvested from these cultures. Cell invasion assay and qPCR were conducted to examine migration and marker expression in both groups. Cancer cell line-derived xenografts were established in nude mice to validate findings <i>in vivo</i>.</p><p><strong>Results: </strong>Our results initially indicated that the addition of 2F-PerAcFuc, an inhibitor of fucosylation, resulted in the down-regulation of the Fut3/CD15s pathway in both cancer stem-like cells and the xenograft model. Measurements of subcutaneous xenograft tumor volume revealed a significant decrease in tumor size among nude mice after treatment with 2F-PerAcFuc. Additionally, a reduction in Fut8/E-cadherin levels was observed in the xenograft model of nude mice. Furthermore, the administration of 2F-PerAcFuc lowered the levels of fucosylated glycoconjugates in nude mice.</p><p><strong>Conclusion: </strong>Our data suggest that inhibition of fucosyltransferase 3 and 8 can reduce the metastatic capacity of cancer stem-like cells by down-regulating CD15s and E-cadherin in a mouse model of esophageal cancer.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/IJBMS.2024.74726.16228\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2024.74726.16228","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Fucosyltransferase 3 and 8 promote the metastatic capacity of cancer stem-like cells via CD15s and E-cadherin in esophageal cancer.
Objectives: Esophageal cancer stem cells (ECSCs) have been identified as the subset of cells within esophageal squamous cell carcinoma that possess tumorigenic, invasive, and metastatic properties. One important aspect of cancer metastasis is the binding of sialyl-Lewis X (CD15s) with E- or P-selectin, which facilitates the adhesion and migration of cancer cells to distant sites. This study was conducted to investigate the impact of fucosylation processes on the metastatic behavior of ECSCs.
Materials and methods: The esophageal cancer cell line (KYSE-30) was cultured and divided into control and 2F-peracetyl fucose (2F-PerAcFuc) treated groups. Spheres were harvested from these cultures. Cell invasion assay and qPCR were conducted to examine migration and marker expression in both groups. Cancer cell line-derived xenografts were established in nude mice to validate findings in vivo.
Results: Our results initially indicated that the addition of 2F-PerAcFuc, an inhibitor of fucosylation, resulted in the down-regulation of the Fut3/CD15s pathway in both cancer stem-like cells and the xenograft model. Measurements of subcutaneous xenograft tumor volume revealed a significant decrease in tumor size among nude mice after treatment with 2F-PerAcFuc. Additionally, a reduction in Fut8/E-cadherin levels was observed in the xenograft model of nude mice. Furthermore, the administration of 2F-PerAcFuc lowered the levels of fucosylated glycoconjugates in nude mice.
Conclusion: Our data suggest that inhibition of fucosyltransferase 3 and 8 can reduce the metastatic capacity of cancer stem-like cells by down-regulating CD15s and E-cadherin in a mouse model of esophageal cancer.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.