一种基于深度学习的算法,用于自动检测腕关节正面X光片中的腕关节周围脱位。

IF 0.9 4区 医学 Q4 ORTHOPEDICS Hand Surgery & Rehabilitation Pub Date : 2024-09-01 DOI:10.1016/j.hansur.2024.101742
{"title":"一种基于深度学习的算法,用于自动检测腕关节正面X光片中的腕关节周围脱位。","authors":"","doi":"10.1016/j.hansur.2024.101742","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a Deep Learning algorithm to automatically detect perilunate dislocation in anteroposterior wrist radiographs. A total of 374 annotated radiographs, 345 normal and 29 pathological, of skeletally mature adolescents and adults aged ≥16 years were used to train, validate and test two YOLOv8 deep neural models. The training set included 245 normal and 15 pathological radiographs; the pathological training set was supplemented by 240 radiographs obtained by data augmentation. The test set comprised 30 normal and 10 pathological radiographs. The first model was used for detecting the carpal region, and the second for segmenting a region between Gilula’s 2nd and 3rd arcs. The output of the segmentation model, trained multiple times with varying random initial parameter values and augmentations, was then assigned a probability of being normal or pathological through ensemble averaging. In the study dataset, the algorithm achieved an overall F1-score of 0.880: 0.928 in the normal subgroup, with 1.0 precision, and 0.833 in the pathological subgroup, with 1.0 recall (or sensitivity), demonstrating that diagnosis of perilunate dislocation can be improved by automatic analysis of anteroposterior radiographs.</p></div><div><h3>Level of evidence</h3><p>: III.</p></div>","PeriodicalId":54301,"journal":{"name":"Hand Surgery & Rehabilitation","volume":"43 4","pages":"Article 101742"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468122924001579/pdfft?md5=0b05023b132004e1c940e6d00d4efee5&pid=1-s2.0-S2468122924001579-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A deep learning-based algorithm for automatic detection of perilunate dislocation in frontal wrist radiographs\",\"authors\":\"\",\"doi\":\"10.1016/j.hansur.2024.101742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study proposes a Deep Learning algorithm to automatically detect perilunate dislocation in anteroposterior wrist radiographs. A total of 374 annotated radiographs, 345 normal and 29 pathological, of skeletally mature adolescents and adults aged ≥16 years were used to train, validate and test two YOLOv8 deep neural models. The training set included 245 normal and 15 pathological radiographs; the pathological training set was supplemented by 240 radiographs obtained by data augmentation. The test set comprised 30 normal and 10 pathological radiographs. The first model was used for detecting the carpal region, and the second for segmenting a region between Gilula’s 2nd and 3rd arcs. The output of the segmentation model, trained multiple times with varying random initial parameter values and augmentations, was then assigned a probability of being normal or pathological through ensemble averaging. In the study dataset, the algorithm achieved an overall F1-score of 0.880: 0.928 in the normal subgroup, with 1.0 precision, and 0.833 in the pathological subgroup, with 1.0 recall (or sensitivity), demonstrating that diagnosis of perilunate dislocation can be improved by automatic analysis of anteroposterior radiographs.</p></div><div><h3>Level of evidence</h3><p>: III.</p></div>\",\"PeriodicalId\":54301,\"journal\":{\"name\":\"Hand Surgery & Rehabilitation\",\"volume\":\"43 4\",\"pages\":\"Article 101742\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468122924001579/pdfft?md5=0b05023b132004e1c940e6d00d4efee5&pid=1-s2.0-S2468122924001579-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hand Surgery & Rehabilitation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468122924001579\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hand Surgery & Rehabilitation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468122924001579","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种深度学习算法,用于自动检测腕关节前后位X光片上的unate脱位。共使用了 374 张注释过的射线照片(345 张正常,29 张病理)来训练、验证和测试两个 YOLO v8 深度神经模型。第一个模型用于检测腕骨区域,第二个模型用于分割 Gilula 第二弧和第三弧之间的区域。分割模型的输出通过不同的随机初始参数值和增强进行多次训练,然后通过集合平均分配正常或病理的概率。在该数据集中,该算法的总体 F1 分数为 0.880:这表明,通过自动分析前胸X光片,可以改善对unrunate周围脱位的诊断。证据等级:证据等级:III。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deep learning-based algorithm for automatic detection of perilunate dislocation in frontal wrist radiographs

This study proposes a Deep Learning algorithm to automatically detect perilunate dislocation in anteroposterior wrist radiographs. A total of 374 annotated radiographs, 345 normal and 29 pathological, of skeletally mature adolescents and adults aged ≥16 years were used to train, validate and test two YOLOv8 deep neural models. The training set included 245 normal and 15 pathological radiographs; the pathological training set was supplemented by 240 radiographs obtained by data augmentation. The test set comprised 30 normal and 10 pathological radiographs. The first model was used for detecting the carpal region, and the second for segmenting a region between Gilula’s 2nd and 3rd arcs. The output of the segmentation model, trained multiple times with varying random initial parameter values and augmentations, was then assigned a probability of being normal or pathological through ensemble averaging. In the study dataset, the algorithm achieved an overall F1-score of 0.880: 0.928 in the normal subgroup, with 1.0 precision, and 0.833 in the pathological subgroup, with 1.0 recall (or sensitivity), demonstrating that diagnosis of perilunate dislocation can be improved by automatic analysis of anteroposterior radiographs.

Level of evidence

: III.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
27.30%
发文量
0
审稿时长
49 days
期刊介绍: As the official publication of the French, Belgian and Swiss Societies for Surgery of the Hand, as well as of the French Society of Rehabilitation of the Hand & Upper Limb, ''Hand Surgery and Rehabilitation'' - formerly named "Chirurgie de la Main" - publishes original articles, literature reviews, technical notes, and clinical cases. It is indexed in the main international databases (including Medline). Initially a platform for French-speaking hand surgeons, the journal will now publish its articles in English to disseminate its author''s scientific findings more widely. The journal also includes a biannual supplement in French, the monograph of the French Society for Surgery of the Hand, where comprehensive reviews in the fields of hand, peripheral nerve and upper limb surgery are presented. Organe officiel de la Société française de chirurgie de la main, de la Société française de Rééducation de la main (SFRM-GEMMSOR), de la Société suisse de chirurgie de la main et du Belgian Hand Group, indexée dans les grandes bases de données internationales (Medline, Embase, Pascal, Scopus), Hand Surgery and Rehabilitation - anciennement titrée Chirurgie de la main - publie des articles originaux, des revues de la littérature, des notes techniques, des cas clinique. Initialement plateforme d''expression francophone de la spécialité, la revue s''oriente désormais vers l''anglais pour devenir une référence scientifique et de formation de la spécialité en France et en Europe. Avec 6 publications en anglais par an, la revue comprend également un supplément biannuel, la monographie du GEM, où sont présentées en français, des mises au point complètes dans les domaines de la chirurgie de la main, des nerfs périphériques et du membre supérieur.
期刊最新文献
Contents Morbidity associated with pre-hospital upper-limb tourniquet in civilian trauma: a case series Catch the shift: Ultrasound diagnosis of scapholunate lesion during Watson test ChatGPT: A concise Google alternative for people seeking accurate and comprehensive carpal tunnel syndrome information Ultrasound-based Measurement of the Intra-scaphoid angle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1