分数布朗运动驱动的 SDE 的欧拉方案:马利亚文可微分性和均匀上界估计

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY Stochastic Processes and their Applications Pub Date : 2024-06-08 DOI:10.1016/j.spa.2024.104412
Jorge A. León , Yanghui Liu , Samy Tindel
{"title":"分数布朗运动驱动的 SDE 的欧拉方案:马利亚文可微分性和均匀上界估计","authors":"Jorge A. León ,&nbsp;Yanghui Liu ,&nbsp;Samy Tindel","doi":"10.1016/j.spa.2024.104412","DOIUrl":null,"url":null,"abstract":"<div><p>The Malliavin differentiability of a SDE plays a crucial role in the study of density smoothness and ergodicity among others. For Gaussian driven SDEs the differentiability issue is solved essentially in Cass et al., (2013). In this paper, we consider the Malliavin differentiability for the Euler scheme of such SDEs. We will focus on SDEs driven by fractional Brownian motions (fBm), which is a very natural class of Gaussian processes. We derive a uniform (in the step size <span><math><mi>n</mi></math></span>) path-wise upper-bound estimate for the Euler scheme for stochastic differential equations driven by fBm with Hurst parameter <span><math><mrow><mi>H</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> and its Malliavin derivatives.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"175 ","pages":"Article 104412"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euler scheme for SDEs driven by fractional Brownian motions: Malliavin differentiability and uniform upper-bound estimates\",\"authors\":\"Jorge A. León ,&nbsp;Yanghui Liu ,&nbsp;Samy Tindel\",\"doi\":\"10.1016/j.spa.2024.104412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Malliavin differentiability of a SDE plays a crucial role in the study of density smoothness and ergodicity among others. For Gaussian driven SDEs the differentiability issue is solved essentially in Cass et al., (2013). In this paper, we consider the Malliavin differentiability for the Euler scheme of such SDEs. We will focus on SDEs driven by fractional Brownian motions (fBm), which is a very natural class of Gaussian processes. We derive a uniform (in the step size <span><math><mi>n</mi></math></span>) path-wise upper-bound estimate for the Euler scheme for stochastic differential equations driven by fBm with Hurst parameter <span><math><mrow><mi>H</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> and its Malliavin derivatives.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"175 \",\"pages\":\"Article 104412\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001182\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001182","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

SDE 的马利亚文可微分性在密度平滑性和遍历性等研究中起着至关重要的作用。Cass 等人(2013 年)基本解决了高斯驱动 SDE 的可微分性问题。在本文中,我们将考虑此类 SDE 的欧拉方案的马利亚文可微分性。我们将重点关注由分数布朗运动(fBm)驱动的 SDE,这是一类非常自然的高斯过程。我们推导了一个均匀的(步长为 n 的)路径上界估计值,用于由 Hurst 参数为 H>1/3 的 fBm 驱动的随机微分方程的欧拉方案及其马利亚文导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Euler scheme for SDEs driven by fractional Brownian motions: Malliavin differentiability and uniform upper-bound estimates

The Malliavin differentiability of a SDE plays a crucial role in the study of density smoothness and ergodicity among others. For Gaussian driven SDEs the differentiability issue is solved essentially in Cass et al., (2013). In this paper, we consider the Malliavin differentiability for the Euler scheme of such SDEs. We will focus on SDEs driven by fractional Brownian motions (fBm), which is a very natural class of Gaussian processes. We derive a uniform (in the step size n) path-wise upper-bound estimate for the Euler scheme for stochastic differential equations driven by fBm with Hurst parameter H>1/3 and its Malliavin derivatives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
期刊最新文献
Editorial Board Rate of escape of the conditioned two-dimensional simple random walk Wasserstein convergence rates for empirical measures of random subsequence of {nα} Nonnegativity preserving convolution kernels. Application to Stochastic Volterra Equations in closed convex domains and their approximation Correlation structure and resonant pairs for arithmetic random waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1