首页 > 最新文献

Stochastic Processes and their Applications最新文献

英文 中文
Large-sample analysis of cost functionals for inference under the coalescent 大样本成本函数分析在聚结下进行推理
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-24 DOI: 10.1016/j.spa.2026.104894
Martina Favero , Jere Koskela
The coalescent is a foundational model of latent genealogical trees under neutral evolution, but suffers from intractable sampling probabilities. Methods for approximating these sampling probabilities either introduce bias or fail to scale to large sample sizes. We show that a class of cost functionals of the coalescent with recurrent mutation and a finite number of alleles converge to tractable processes in the infinite-sample limit. A particular choice of costs yields insight about importance sampling methods, which are a classical tool for coalescent sampling probability approximation. These insights reveal that the behaviour of coalescent importance sampling algorithms differs markedly from standard sequential importance samplers, with or without resampling. We conduct a simulation study to verify that our asymptotics are accurate for algorithms with finite (and moderate) sample sizes. Our results constitute the first theoretical description of large-sample importance sampling algorithms for the coalescent, provide heuristics for the a priori optimisation of computational effort, and identify settings where resampling is harmful for algorithm performance. We observe strikingly different behaviour for importance sampling methods under the infinite sites model of mutation, which is regarded as a good and more tractable approximation of finite alleles mutation in most respects.
聚结树是中性进化条件下潜在谱系树的基础模型,但采样概率难以处理。近似这些抽样概率的方法要么引入偏差,要么无法适应大样本量。我们证明了在无限样本极限下,一类具有重复突变和有限数目等位基因的代价函数收敛于可处理过程。一个特定的成本选择产生了重要抽样方法的洞察力,这是一个经典的工具,为聚结抽样概率近似。这些见解揭示了合并重要性抽样算法的行为与标准顺序重要性抽样有或没有重新抽样的显著不同。我们进行了模拟研究,以验证我们的渐近性对于有限(和中等)样本量的算法是准确的。我们的研究结果构成了对大样本重要性采样算法的第一个理论描述,为计算工作的先验优化提供了启发式方法,并确定了重采样对算法性能有害的设置。我们观察到,在突变的无限位点模型下,重要抽样方法的行为显著不同,该模型在大多数方面被认为是有限等位基因突变的良好且更易于处理的近似。
{"title":"Large-sample analysis of cost functionals for inference under the coalescent","authors":"Martina Favero ,&nbsp;Jere Koskela","doi":"10.1016/j.spa.2026.104894","DOIUrl":"10.1016/j.spa.2026.104894","url":null,"abstract":"<div><div>The coalescent is a foundational model of latent genealogical trees under neutral evolution, but suffers from intractable sampling probabilities. Methods for approximating these sampling probabilities either introduce bias or fail to scale to large sample sizes. We show that a class of cost functionals of the coalescent with recurrent mutation and a finite number of alleles converge to tractable processes in the infinite-sample limit. A particular choice of costs yields insight about importance sampling methods, which are a classical tool for coalescent sampling probability approximation. These insights reveal that the behaviour of coalescent importance sampling algorithms differs markedly from standard sequential importance samplers, with or without resampling. We conduct a simulation study to verify that our asymptotics are accurate for algorithms with finite (and moderate) sample sizes. Our results constitute the first theoretical description of large-sample importance sampling algorithms for the coalescent, provide heuristics for the a priori optimisation of computational effort, and identify settings where resampling is harmful for algorithm performance. We observe strikingly different behaviour for importance sampling methods under the infinite sites model of mutation, which is regarded as a good and more tractable approximation of finite alleles mutation in most respects.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104894"},"PeriodicalIF":1.2,"publicationDate":"2026-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146078392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the 1/H-variation of the divergence integral with respect to a Hermite process 关于Hermite过程散度积分的1/ h变分
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-22 DOI: 10.1016/j.spa.2026.104891
Petr Čoupek, Pavel Kříž, Matěj Svoboda
In this paper, a divergence-type integral of a random integrand with respect to the Hermite process of order kN with Hurst parameter H ∈ (1/2, 1) is defined and it is shown that the integral is of finite 1/H-variation.
本文定义了Hurst参数H ∈ (1/2,1)的k∈N阶Hermite过程的随机被积函数的散度型积分,并证明了该积分具有1/H的有限变分。
{"title":"On the 1/H-variation of the divergence integral with respect to a Hermite process","authors":"Petr Čoupek,&nbsp;Pavel Kříž,&nbsp;Matěj Svoboda","doi":"10.1016/j.spa.2026.104891","DOIUrl":"10.1016/j.spa.2026.104891","url":null,"abstract":"<div><div>In this paper, a divergence-type integral of a random integrand with respect to the Hermite process of order <span><math><mrow><mi>k</mi><mo>∈</mo><mi>N</mi></mrow></math></span> with Hurst parameter <em>H</em> ∈ (1/2, 1) is defined and it is shown that the integral is of finite 1/<em>H</em>-variation.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104891"},"PeriodicalIF":1.2,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146078432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Small-time central limit theorems for stochastic Volterra integral equations and their Markovian lifts 随机Volterra积分方程的小时中心极限定理及其马尔可夫提升
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-22 DOI: 10.1016/j.spa.2026.104892
Martin Friesen , Stefan Gerhold , Kristof Wiedermann
We study small-time central limit theorems for stochastic Volterra integral equations with Hölder continuous coefficients and general locally square integrable Volterra kernels. We prove the convergence of the finite-dimensional distributions, a functional CLT, and limit theorems for smooth transformations of the process, covering a large class of Volterra kernels including rough models based on Riemann-Liouville kernels with short- or long-range dependencies. To illustrate our results, we derive asymptotic pricing formulae for digital calls on the realized variance in three different regimes. The latter provides a robust and largely model-independent pricing method for small maturities in rough volatility models. Finally, for the case of completely monotone kernels, we introduce a flexible framework of Hilbert space-valued Markovian lifts and derive analogous limit theorems for such lifts. The latter provides new small-time limit theorems for stochastic Volterra processes obtained by transformation of the underlying Volterra kernels.
研究了具有Hölder连续系数和一般局部平方可积Volterra核的随机Volterra积分方程的小时中心极限定理。我们证明了有限维分布的收敛性,一个泛函CLT,以及过程平滑变换的极限定理,涵盖了大量的Volterra核,包括基于Riemann-Liouville核的具有短期或长期依赖关系的粗糙模型。为了说明我们的结果,我们在三种不同的制度下推导了数字呼叫对实现方差的渐近定价公式。后者为粗糙波动率模型中的小到期日提供了一种鲁棒且在很大程度上与模型无关的定价方法。最后,在完全单调核的情况下,我们引入了Hilbert空间值马尔可夫提升的柔性框架,并推导了类似的极限定理。后者为随机Volterra过程提供了新的小时极限定理,该定理是由底层Volterra核的变换得到的。
{"title":"Small-time central limit theorems for stochastic Volterra integral equations and their Markovian lifts","authors":"Martin Friesen ,&nbsp;Stefan Gerhold ,&nbsp;Kristof Wiedermann","doi":"10.1016/j.spa.2026.104892","DOIUrl":"10.1016/j.spa.2026.104892","url":null,"abstract":"<div><div>We study small-time central limit theorems for stochastic Volterra integral equations with Hölder continuous coefficients and general locally square integrable Volterra kernels. We prove the convergence of the finite-dimensional distributions, a functional CLT, and limit theorems for smooth transformations of the process, covering a large class of Volterra kernels including rough models based on Riemann-Liouville kernels with short- or long-range dependencies. To illustrate our results, we derive asymptotic pricing formulae for digital calls on the realized variance in three different regimes. The latter provides a robust and largely model-independent pricing method for small maturities in rough volatility models. Finally, for the case of completely monotone kernels, we introduce a flexible framework of Hilbert space-valued Markovian lifts and derive analogous limit theorems for such lifts. The latter provides new small-time limit theorems for stochastic Volterra processes obtained by transformation of the underlying Volterra kernels.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104892"},"PeriodicalIF":1.2,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146078391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limit theorems for stochastic integrals with long memory processes 长记忆过程随机积分的极限定理
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-17 DOI: 10.1016/j.spa.2026.104888
Zhishui Hu , Hanying Liang , Qiying Wang
On the convergence to stochastic integrals, semi-martingale structure is imposed in most of previous literature. This semi-martingale structure is restrictive in many statistical and econometric applications, particularly in the field of cointegration. In this paper, we investigate the convergence to stochastic integrals beyond the semi-martingale structure. In particular, we consider the convergence of stochastic integrals with general linear process innovations, allowing for long memory, short memory and antipersistence processes in a unified framework.
在收敛到随机积分的问题上,以往的文献大多采用半鞅结构。这种半鞅结构在许多统计和计量经济学应用中是限制性的,特别是在协整领域。本文研究了随机积分在半鞅结构以外的收敛性。特别地,我们考虑随机积分与一般线性过程创新的收敛性,在统一的框架中允许长记忆,短记忆和反持久性过程。
{"title":"Limit theorems for stochastic integrals with long memory processes","authors":"Zhishui Hu ,&nbsp;Hanying Liang ,&nbsp;Qiying Wang","doi":"10.1016/j.spa.2026.104888","DOIUrl":"10.1016/j.spa.2026.104888","url":null,"abstract":"<div><div>On the convergence to stochastic integrals, semi-martingale structure is imposed in most of previous literature. This semi-martingale structure is restrictive in many statistical and econometric applications, particularly in the field of cointegration. In this paper, we investigate the convergence to stochastic integrals beyond the semi-martingale structure. In particular, we consider the convergence of stochastic integrals with general linear process innovations, allowing for long memory, short memory and antipersistence processes in a unified framework.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104888"},"PeriodicalIF":1.2,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146023275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Purification of quantum trajectories in infinite dimensions 无限维量子轨迹的净化
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-16 DOI: 10.1016/j.spa.2026.104889
Federico Girotti, Alessandro Vitale
In this work we exhibit a class of examples that show that the characterization of purification of quantum trajectories in terms of ‘dark’ subspaces that was proved for finite dimensional systems (Infin. Dimens. Anal. Quantum Probab. Relat. Top., 06(02), 223-243, 2003 and IMS Lectures Notes-Monograph Series, 48, 252-261, 2006) fails to hold in infinite dimensional ones. Moreover, we prove that the new phenomenon emerging in our class of models and preventing purification to happen is the only new possibility that appears in infinite dimensional systems. Our proof strategy points out that the presence of new phenomena in infinite dimensional systems is due to the fact that the set of orthogonal projections is not sequentially compact. Having in mind this insight, we are able to prove that the finite dimensional result extends to a class of infinite dimensional models.
在这项工作中,我们展示了一类例子,这些例子表明,在有限维系统中,用“暗”子空间来描述量子轨迹的纯化是被证明的。Dimens。分析的。量子Probab。遗传代数。上面。(1)在无限维空间中不成立。(1)在无限维空间中不成立。(2)在无限维空间中不成立。此外,我们证明了在我们这类模型中出现的阻止净化发生的新现象是在无限维系统中出现的唯一新可能性。我们的证明策略指出在无限维系统中新现象的存在是由于正交投影的集合不是顺序紧致的。考虑到这一点,我们能够证明有限维的结果可以推广到一类无限维的模型。
{"title":"Purification of quantum trajectories in infinite dimensions","authors":"Federico Girotti,&nbsp;Alessandro Vitale","doi":"10.1016/j.spa.2026.104889","DOIUrl":"10.1016/j.spa.2026.104889","url":null,"abstract":"<div><div>In this work we exhibit a class of examples that show that the characterization of purification of quantum trajectories in terms of ‘dark’ subspaces that was proved for finite dimensional systems (<em>Infin. Dimens. Anal. Quantum Probab. Relat. Top.</em>, 06(02), 223-243, 2003 and <em>IMS Lectures Notes-Monograph Series</em>, 48, 252-261, 2006) fails to hold in infinite dimensional ones. Moreover, we prove that the new phenomenon emerging in our class of models and preventing purification to happen is the only new possibility that appears in infinite dimensional systems. Our proof strategy points out that the presence of new phenomena in infinite dimensional systems is due to the fact that the set of orthogonal projections is not sequentially compact. Having in mind this insight, we are able to prove that the finite dimensional result extends to a class of infinite dimensional models.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104889"},"PeriodicalIF":1.2,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146023273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional delta-method for resampling empirical processes in multiple sample problems 多样本问题中经验过程重采样的条件delta法
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-14 DOI: 10.1016/j.spa.2026.104885
Merle Munko , Dennis Dobler
The functional delta-method has a wide range of applications in statistics. Applications on functionals of empirical processes yield various limit results for classical statistics. To improve the finite sample properties of statistical inference procedures that are based on the limit results, resampling procedures such as random permutation and bootstrap methods are a popular solution. In order to analyze the behaviour of the functionals of the resampling empirical processes, corresponding conditional functional delta-methods are desirable. While conditional functional delta-methods for some special cases already exist, there is a lack of more general conditional functional delta-methods for resampling procedures as the permutation and pooled bootstrap method. This gap is addressed in the present paper. Thereby, a general multiple sample problem is considered. The flexible application of the developed conditional delta-method is shown in various relevant examples.
函数δ法在统计学中有着广泛的应用。在经验过程的泛函上的应用产生了经典统计的各种极限结果。为了改善基于极限结果的统计推理过程的有限样本性质,随机置换和自举方法等重采样过程是一种流行的解决方案。为了分析重采样经验过程的泛函行为,需要相应的条件泛函delta方法。对于一些特殊情况,条件泛函方法已经存在,但对于重采样过程,缺乏更一般的条件泛函方法,如置换法和池自举法。本文解决了这一差距。因此,考虑了一般的多样本问题。通过各种相关实例说明了所开发的条件delta法的灵活应用。
{"title":"Conditional delta-method for resampling empirical processes in multiple sample problems","authors":"Merle Munko ,&nbsp;Dennis Dobler","doi":"10.1016/j.spa.2026.104885","DOIUrl":"10.1016/j.spa.2026.104885","url":null,"abstract":"<div><div>The functional delta-method has a wide range of applications in statistics. Applications on functionals of empirical processes yield various limit results for classical statistics. To improve the finite sample properties of statistical inference procedures that are based on the limit results, resampling procedures such as random permutation and bootstrap methods are a popular solution. In order to analyze the behaviour of the functionals of the resampling empirical processes, corresponding conditional functional delta-methods are desirable. While conditional functional delta-methods for some special cases already exist, there is a lack of more general conditional functional delta-methods for resampling procedures as the permutation and pooled bootstrap method. This gap is addressed in the present paper. Thereby, a general multiple sample problem is considered. The flexible application of the developed conditional delta-method is shown in various relevant examples.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104885"},"PeriodicalIF":1.2,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146023276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the distribution of the telegraph meander and its properties 论电报弯曲的分布及其性质
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-14 DOI: 10.1016/j.spa.2026.104887
A. Pedicone, E. Orsingher
In this paper we study the telegraph meander, a random function obtained by conditioning the telegraph process to stay above the zero level. The finite dimensional distribution of the telegraph meander is derived by applying the reflection principle for the telegraph process and the Markovianity of the telegraph process with the velocity process. We show that the law of the telegraph meander at the end time is a solution to a hyperbolic equation, and we find the characteristic function and moments of any order. Finally, we prove that Brownian meander is the weak limit of the telegraph meander.
本文研究了电报迂回,这是一种通过使电报过程保持在零水平以上而得到的随机函数。利用电报过程的反射原理和电报过程与速度过程的马尔可夫性,导出了电报曲流的有限维分布。我们证明了终端时间的电报弯曲定律是一个双曲方程的解,并找到了任意阶的特征函数和矩。最后,我们证明了布朗弯曲是电报弯曲的弱极限。
{"title":"On the distribution of the telegraph meander and its properties","authors":"A. Pedicone,&nbsp;E. Orsingher","doi":"10.1016/j.spa.2026.104887","DOIUrl":"10.1016/j.spa.2026.104887","url":null,"abstract":"<div><div>In this paper we study the telegraph meander, a random function obtained by conditioning the telegraph process to stay above the zero level. The finite dimensional distribution of the telegraph meander is derived by applying the reflection principle for the telegraph process and the Markovianity of the telegraph process with the velocity process. We show that the law of the telegraph meander at the end time is a solution to a hyperbolic equation, and we find the characteristic function and moments of any order. Finally, we prove that Brownian meander is the weak limit of the telegraph meander.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104887"},"PeriodicalIF":1.2,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145978768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limiting behavior of invariant measures of fractional stochastic reaction-diffusion equations on expanding domains 扩展域上分数阶随机反应扩散方程不变测度的极限行为
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-14 DOI: 10.1016/j.spa.2026.104884
Zhang Chen , Bixiang Wang , Dandan Yang
This paper is concerned with the limiting behavior of the fractional stochastic reaction-diffusion equations defined in a sequence {Ok}k=1 of open balls of radius k in Rn. Under certain conditions, we prove that every weak limit point of invariant measures of the equations defined in Ok must be an invariant measure of the equation defined on Rn as k → ∞. We also prove the convergence of invariant measures of the equations in Ok in terms of the Wasserstein metric and derive the rate of such convergence as k → ∞. The uniform tail-ends estimates of solutions are employed to overcome the non-compactness of Sobolev embeddings on Rn.
研究了在Rn中半径为k的开球序列{Ok}k=1∞上定义的分数阶随机反应扩散方程的极限行为。在一定条件下,我们证明了在Ok中定义的方程的不变测度的每一个弱极限点必须是在Rn上定义为k → ∞的方程的不变测度。我们还用Wasserstein度规证明了Ok中方程不变测度的收敛性,并导出了k → ∞的收敛率。采用均匀尾端估计来克服Rn上Sobolev嵌入的非紧性。
{"title":"Limiting behavior of invariant measures of fractional stochastic reaction-diffusion equations on expanding domains","authors":"Zhang Chen ,&nbsp;Bixiang Wang ,&nbsp;Dandan Yang","doi":"10.1016/j.spa.2026.104884","DOIUrl":"10.1016/j.spa.2026.104884","url":null,"abstract":"<div><div>This paper is concerned with the limiting behavior of the fractional stochastic reaction-diffusion equations defined in a sequence <span><math><msubsup><mrow><mo>{</mo><msub><mi>O</mi><mi>k</mi></msub><mo>}</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>∞</mi></msubsup></math></span> of open balls of radius <em>k</em> in <span><math><msup><mi>R</mi><mi>n</mi></msup></math></span>. Under certain conditions, we prove that every weak limit point of invariant measures of the equations defined in <em>O<sub>k</sub></em> must be an invariant measure of the equation defined on <span><math><msup><mi>R</mi><mi>n</mi></msup></math></span> as <em>k</em> → ∞. We also prove the convergence of invariant measures of the equations in <em>O<sub>k</sub></em> in terms of the Wasserstein metric and derive the rate of such convergence as <em>k</em> → ∞. The uniform tail-ends estimates of solutions are employed to overcome the non-compactness of Sobolev embeddings on <span><math><msup><mi>R</mi><mi>n</mi></msup></math></span>.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104884"},"PeriodicalIF":1.2,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146023260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An injective martingale coupling 一个内射鞅耦合
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-12 DOI: 10.1016/j.spa.2026.104883
David Hobson , Dominykas Norgilas
<div><div>We give an injective martingale coupling; in particular, given measures <em>μ</em> and <em>ν</em> in convex order on <span><math><mi>R</mi></math></span> such that <em>ν</em> is continuous, we construct a martingale transport such that for each <em>y</em> in the support of the target law <em>ν</em> there is a <em>unique x</em> in a support of the initial law <em>μ</em> such that (some of) the mass at <em>x</em> is transported to <em>y</em>. Then <em>π</em> has disintegration <span><math><mrow><mi>π</mi><mrow><mo>(</mo><mi>d</mi><mi>x</mi><mo>,</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>ν</mi><mrow><mo>(</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow><msub><mi>δ</mi><mrow><mi>θ</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow></msub><mrow><mo>(</mo><mi>d</mi><mi>x</mi><mo>)</mo></mrow></mrow></math></span> for some function <em>θ</em>.</div><div>More precisely we construct a martingale coupling <em>π</em> of the measures <em>μ</em> and <em>ν</em> such that there is a set Γ<sub><em>μ</em></sub> such that <span><math><mrow><mi>μ</mi><mo>(</mo><msub><mstyle><mi>Γ</mi></mstyle><mi>μ</mi></msub><mo>)</mo><mo>=</mo><mn>1</mn></mrow></math></span> and a disintegration <span><math><msub><mrow><mo>(</mo><msub><mi>π</mi><mi>x</mi></msub><mo>)</mo></mrow><mrow><mi>x</mi><mo>∈</mo><msub><mstyle><mi>Γ</mi></mstyle><mi>μ</mi></msub></mrow></msub></math></span> of <em>π</em> of the form <span><math><mrow><mi>π</mi><mrow><mo>(</mo><mi>d</mi><mi>x</mi><mo>,</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>π</mi><mi>x</mi></msub><mrow><mo>(</mo><mi>d</mi><mi>y</mi><mo>)</mo></mrow><mi>μ</mi><mrow><mo>(</mo><mi>d</mi><mi>x</mi><mo>)</mo></mrow></mrow></math></span> such that, with <span><math><msub><mstyle><mi>Γ</mi></mstyle><msub><mi>π</mi><mi>x</mi></msub></msub></math></span> a support of <em>π<sub>x</sub></em>, we have <span><math><mrow><mo>#</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><msub><mstyle><mi>Γ</mi></mstyle><mi>μ</mi></msub><mo>:</mo><mi>y</mi><mo>∈</mo><msub><mstyle><mi>Γ</mi></mstyle><msub><mi>π</mi><mi>x</mi></msub></msub><mo>}</mo></mrow><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span> for all <em>y</em> and <span><math><mrow><mrow><mo>{</mo><mi>y</mi><mo>:</mo><mo>#</mo><mrow><mo>{</mo><mi>x</mi><mo>∈</mo><msub><mstyle><mi>Γ</mi></mstyle><mi>μ</mi></msub><mo>:</mo><mi>y</mi><mo>∈</mo><msub><mstyle><mi>Γ</mi></mstyle><msub><mi>π</mi><mi>x</mi></msub></msub><mo>}</mo></mrow><mo>=</mo><mn>1</mn><mo>}</mo></mrow><mo>=</mo><mtext>supp</mtext><mrow><mo>(</mo><mi>ν</mi><mo>)</mo></mrow></mrow></math></span>. Moreover, if <em>μ</em> is continuous we may take <span><math><mrow><msub><mstyle><mi>Γ</mi></mstyle><msub><mi>π</mi><mi>x</mi></msub></msub><mo>=</mo><mtext>supp</mtext><mrow><mo>(</mo><msub><mi>π</mi><mi>x</mi></msub><mo>)</mo></mrow></mrow></math></span> for each <em>x</em>. However, we cannot also insist that <span><math><mrow><msub><mstyle><mi>Γ</mi></mstyle><mi>μ</mi></msub><mo>=</m
给出了一个内射鞅耦合;特别地,给定R上凸阶的μ和ν,使得ν是连续的,我们构造了一个鞅输运,使得对于支持目标定律ν的每一个y,在初始定律μ的支持下,有一个唯一的x,使得x处的(一些)质量被传输到y。然后π对某些函数θ有分解π(dx,dy)=ν(dy)δθ(y)(dx)。更精确地说,我们构造了测度μ和ν的鞅耦合π,使得π有一个集合Γμ使得μ(Γμ)=1, π的分解(πx)x∈Γμ的形式为π(dx,dy)=πx(dy)μ(dx),使得在Γπx πx的支持下,我们有#{x∈Γμ:y∈Γπx}∈{0,1}对于所有y和{y:#{x∈Γμ:y∈Γπx}=1}=supp(ν)。此外,如果μ是连续的,我们可以对每个x取Γπx=supp(πx),但是,我们也不能坚持Γμ=supp(μ)。
{"title":"An injective martingale coupling","authors":"David Hobson ,&nbsp;Dominykas Norgilas","doi":"10.1016/j.spa.2026.104883","DOIUrl":"10.1016/j.spa.2026.104883","url":null,"abstract":"&lt;div&gt;&lt;div&gt;We give an injective martingale coupling; in particular, given measures &lt;em&gt;μ&lt;/em&gt; and &lt;em&gt;ν&lt;/em&gt; in convex order on &lt;span&gt;&lt;math&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; such that &lt;em&gt;ν&lt;/em&gt; is continuous, we construct a martingale transport such that for each &lt;em&gt;y&lt;/em&gt; in the support of the target law &lt;em&gt;ν&lt;/em&gt; there is a &lt;em&gt;unique x&lt;/em&gt; in a support of the initial law &lt;em&gt;μ&lt;/em&gt; such that (some of) the mass at &lt;em&gt;x&lt;/em&gt; is transported to &lt;em&gt;y&lt;/em&gt;. Then &lt;em&gt;π&lt;/em&gt; has disintegration &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;msub&gt;&lt;mi&gt;δ&lt;/mi&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for some function &lt;em&gt;θ&lt;/em&gt;.&lt;/div&gt;&lt;div&gt;More precisely we construct a martingale coupling &lt;em&gt;π&lt;/em&gt; of the measures &lt;em&gt;μ&lt;/em&gt; and &lt;em&gt;ν&lt;/em&gt; such that there is a set Γ&lt;sub&gt;&lt;em&gt;μ&lt;/em&gt;&lt;/sub&gt; such that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and a disintegration &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of &lt;em&gt;π&lt;/em&gt; of the form &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; such that, with &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; a support of &lt;em&gt;π&lt;sub&gt;x&lt;/sub&gt;&lt;/em&gt;, we have &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;#&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for all &lt;em&gt;y&lt;/em&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;#&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mtext&gt;supp&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;ν&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Moreover, if &lt;em&gt;μ&lt;/em&gt; is continuous we may take &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;msub&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mtext&gt;supp&lt;/mtext&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for each &lt;em&gt;x&lt;/em&gt;. However, we cannot also insist that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mstyle&gt;&lt;mi&gt;Γ&lt;/mi&gt;&lt;/mstyle&gt;&lt;mi&gt;μ&lt;/mi&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/m","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104883"},"PeriodicalIF":1.2,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145978770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On k-clusters of high-intensity random geometric graphs 关于高强度随机几何图的k-簇
IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2026-01-11 DOI: 10.1016/j.spa.2026.104882
Mathew D. Penrose , Xiaochuan Yang
Let k, d be positive integers. We determine a sequence of constants that are asymptotic to the probability that the cluster at the origin in a d-dimensional Poisson Boolean model with balls of fixed radius is of order k, as the intensity becomes large. Using this, we determine the asymptotics of the mean of the number of components of order k, denoted Sn,k in a random geometric graph on n uniformly distributed vertices in a smoothly bounded compact region of d-dimensional Euclidean space, with distance parameter r(n) chosen so that the expected degree grows slowly as n becomes large (the so-called mildly dense limiting regime). We also show that the variance of Sn,k is asymptotic to its mean, and prove Poisson and normal approximation results for Sn,k in this limiting regime. We provide analogous results for the corresponding Poisson process (i.e. with a Poisson number of points).
We also give similar results in the so-called mildly sparse limiting regime where r(n) is chosen so the expected degree decays slowly to zero as n becomes large.
设k d是正整数。当强度变大时,我们确定了一个常数序列,该序列趋近于具有固定半径球的d维泊松布尔模型中原点处簇为k阶的概率。利用这一方法,我们确定了在d维欧几里德空间光滑有界紧致区域的n个均匀分布顶点上的随机几何图中k阶分量(表示为Sn,k)的平均值的渐近性,选择距离参数r(n),使得期望度随着n变大而缓慢增长(所谓的温和密集极限区)。我们还证明了Sn,k的方差是渐近于均值的,并证明了Sn,k在这个极限域中的泊松近似和正态近似结果。我们对相应的泊松过程(即具有泊松点数)提供了类似的结果。我们也给出了类似的结果,在所谓的轻度稀疏的限制条件下,选择r(n),当n变大时,期望度缓慢地衰减到零。
{"title":"On k-clusters of high-intensity random geometric graphs","authors":"Mathew D. Penrose ,&nbsp;Xiaochuan Yang","doi":"10.1016/j.spa.2026.104882","DOIUrl":"10.1016/j.spa.2026.104882","url":null,"abstract":"<div><div>Let <em>k, d</em> be positive integers. We determine a sequence of constants that are asymptotic to the probability that the cluster at the origin in a <em>d</em>-dimensional Poisson Boolean model with balls of fixed radius is of order <em>k</em>, as the intensity becomes large. Using this, we determine the asymptotics of the mean of the number of components of order <em>k</em>, denoted <em>S</em><sub><em>n,k</em></sub> in a random geometric graph on <em>n</em> uniformly distributed vertices in a smoothly bounded compact region of <em>d</em>-dimensional Euclidean space, with distance parameter <em>r</em>(<em>n</em>) chosen so that the expected degree grows slowly as <em>n</em> becomes large (the so-called mildly dense limiting regime). We also show that the variance of <em>S</em><sub><em>n,k</em></sub> is asymptotic to its mean, and prove Poisson and normal approximation results for <em>S</em><sub><em>n,k</em></sub> in this limiting regime. We provide analogous results for the corresponding Poisson process (i.e. with a Poisson number of points).</div><div>We also give similar results in the so-called mildly sparse limiting regime where <em>r</em>(<em>n</em>) is chosen so the expected degree decays slowly to zero as <em>n</em> becomes large.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"195 ","pages":"Article 104882"},"PeriodicalIF":1.2,"publicationDate":"2026-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146023261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stochastic Processes and their Applications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1