{"title":"通过依赖弧线的时间离散发现稀疏动态离散","authors":"Madison Van Dyk , Jochen Koenemann","doi":"10.1016/j.cor.2024.106715","DOIUrl":null,"url":null,"abstract":"<div><p>While many time-dependent network design problems can be formulated as time-indexed formulations with strong relaxations, the size of these formulations depends on the discretization of the time horizon and can become prohibitively large. The recently-developed dynamic discretization discovery (DDD) method allows many time-dependent problems to become more tractable by iteratively solving instances of the problem on smaller networks where each node has its own discrete set of departure times. However, in the current implementation of DDD, all arcs departing a common node share the same set of departure times. This causes DDD to be ineffective for solving problems where all near-optimal solutions require many distinct departure times at the majority of the high-degree nodes in the network. Region-based networks are one such structure that often leads to many high-degree nodes, and their increasing popularity underscores the importance of tailoring solution methods for these networks.</p><p>To improve methods for solving problems that require many departure times at nodes, we develop a DDD framework where the set of departure times is determined on the arc level rather than the node level. We apply this arc-based DDD method to a temporal variant of the service network design problem (SND). We show that an arc-based approach is particularly advantageous when instances arise from region-based networks, and when candidate paths are fixed in the base graph for each commodity. Moreover, our algorithm builds upon the existing DDD framework and achieves these improvements with only benign modifications to the original implementation.</p></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0305054824001874/pdfft?md5=56651e7beedd12008c453ca54c4ce4ae&pid=1-s2.0-S0305054824001874-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Sparse dynamic discretization discovery via arc-dependent time discretizations\",\"authors\":\"Madison Van Dyk , Jochen Koenemann\",\"doi\":\"10.1016/j.cor.2024.106715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While many time-dependent network design problems can be formulated as time-indexed formulations with strong relaxations, the size of these formulations depends on the discretization of the time horizon and can become prohibitively large. The recently-developed dynamic discretization discovery (DDD) method allows many time-dependent problems to become more tractable by iteratively solving instances of the problem on smaller networks where each node has its own discrete set of departure times. However, in the current implementation of DDD, all arcs departing a common node share the same set of departure times. This causes DDD to be ineffective for solving problems where all near-optimal solutions require many distinct departure times at the majority of the high-degree nodes in the network. Region-based networks are one such structure that often leads to many high-degree nodes, and their increasing popularity underscores the importance of tailoring solution methods for these networks.</p><p>To improve methods for solving problems that require many departure times at nodes, we develop a DDD framework where the set of departure times is determined on the arc level rather than the node level. We apply this arc-based DDD method to a temporal variant of the service network design problem (SND). We show that an arc-based approach is particularly advantageous when instances arise from region-based networks, and when candidate paths are fixed in the base graph for each commodity. Moreover, our algorithm builds upon the existing DDD framework and achieves these improvements with only benign modifications to the original implementation.</p></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0305054824001874/pdfft?md5=56651e7beedd12008c453ca54c4ce4ae&pid=1-s2.0-S0305054824001874-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054824001874\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824001874","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Sparse dynamic discretization discovery via arc-dependent time discretizations
While many time-dependent network design problems can be formulated as time-indexed formulations with strong relaxations, the size of these formulations depends on the discretization of the time horizon and can become prohibitively large. The recently-developed dynamic discretization discovery (DDD) method allows many time-dependent problems to become more tractable by iteratively solving instances of the problem on smaller networks where each node has its own discrete set of departure times. However, in the current implementation of DDD, all arcs departing a common node share the same set of departure times. This causes DDD to be ineffective for solving problems where all near-optimal solutions require many distinct departure times at the majority of the high-degree nodes in the network. Region-based networks are one such structure that often leads to many high-degree nodes, and their increasing popularity underscores the importance of tailoring solution methods for these networks.
To improve methods for solving problems that require many departure times at nodes, we develop a DDD framework where the set of departure times is determined on the arc level rather than the node level. We apply this arc-based DDD method to a temporal variant of the service network design problem (SND). We show that an arc-based approach is particularly advantageous when instances arise from region-based networks, and when candidate paths are fixed in the base graph for each commodity. Moreover, our algorithm builds upon the existing DDD framework and achieves these improvements with only benign modifications to the original implementation.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.