{"title":"热化系统内耦合的局部相干性","authors":"Michal Kolář and Radim Filip","doi":"10.1088/2058-9565/ad57e8","DOIUrl":null,"url":null,"abstract":"Quantum superposition of energy eigenstates can appear autonomously in a single quantum two-level system coupled to a low-temperature thermal bath, if such coupling has a proper composite nature. We propose here a principally different and more feasible approach employing engineered interactions between two-level systems being thermalized into a global Gibbs state by weakly coupled thermal bath at temperature T. Therefore, in such case quantum coherence appears by a different mechanism, whereas the system-bath coupling does not have to be engineered. We demonstrate such autonomous coherence generation reaching maximum values of coherence. Moreover, it can be alternatively built up by using weaker but collective interaction with several two-level systems. This approach surpasses the coherence generated by the engineered system-bath coupling for comparable interaction strengths and directly reduces phase estimation error in quantum sensing. This represents a necessary step towards the autonomous quantum sensing.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"20 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local coherence by thermalized intra-system coupling\",\"authors\":\"Michal Kolář and Radim Filip\",\"doi\":\"10.1088/2058-9565/ad57e8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum superposition of energy eigenstates can appear autonomously in a single quantum two-level system coupled to a low-temperature thermal bath, if such coupling has a proper composite nature. We propose here a principally different and more feasible approach employing engineered interactions between two-level systems being thermalized into a global Gibbs state by weakly coupled thermal bath at temperature T. Therefore, in such case quantum coherence appears by a different mechanism, whereas the system-bath coupling does not have to be engineered. We demonstrate such autonomous coherence generation reaching maximum values of coherence. Moreover, it can be alternatively built up by using weaker but collective interaction with several two-level systems. This approach surpasses the coherence generated by the engineered system-bath coupling for comparable interaction strengths and directly reduces phase estimation error in quantum sensing. This represents a necessary step towards the autonomous quantum sensing.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad57e8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad57e8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Local coherence by thermalized intra-system coupling
Quantum superposition of energy eigenstates can appear autonomously in a single quantum two-level system coupled to a low-temperature thermal bath, if such coupling has a proper composite nature. We propose here a principally different and more feasible approach employing engineered interactions between two-level systems being thermalized into a global Gibbs state by weakly coupled thermal bath at temperature T. Therefore, in such case quantum coherence appears by a different mechanism, whereas the system-bath coupling does not have to be engineered. We demonstrate such autonomous coherence generation reaching maximum values of coherence. Moreover, it can be alternatively built up by using weaker but collective interaction with several two-level systems. This approach surpasses the coherence generated by the engineered system-bath coupling for comparable interaction strengths and directly reduces phase estimation error in quantum sensing. This represents a necessary step towards the autonomous quantum sensing.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.